首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
We study optimal control problems for semilinear elliptic equations subject to control and state inequality constraints. Both boundary control and distributed control problems are considered with boundary conditions of Dirichlet or Neumann type. By introducing suitable discretization schemes, the control problem is transcribed into a nonlinear programming problem. Necessary conditions of optimality are discussed both for the continuous and the discretized control problem. It is shown that the recently developed interior point method LOQO of [35] is capable of solving these problems even for high discretizations. Four numerical examples with Dirichlet and Neumann boundary conditions are provided that illustrate the performance of the algorithm for different types of controls including bang–bang controls.  相似文献   

3.
Kostin Georgy  Saurin Vasily 《PAMM》2006,6(1):817-818
An approach to modelling and optimization of controlled dynamical systems with distributed elastic and inertial parameters are considered. The general method of integro-differential relations (IDR) for solving a wide class of boundary value problems is developed and criteria of solution quality are proposed [1]. A numerical algorithm for discrete approximation of controlled motions is worked out [2] and applied to design the optimal control low steering an elastic system to the terminal position and minimizing the given objective function [3]. The polynomial control of plane motions of a homogeneous cantilever beam is investigated. The optimal control problem of beam transportation from the initial rest position to given terminal states, in which the full mechanical energy of the system reaches its minimal value, is considered. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
带松弛因子的Schwarz交替方法   总被引:1,自引:0,他引:1  
张振跃 《计算数学》1990,12(4):421-433
§1.引言 Schwarz交替方法的收敛速度,依赖于子区域重迭部分的大小,重迭部分越大,收敛越快。然而重迭部分增大,必将引起计算量的增大,因此,在重迭部分不变的情况下,如何改善Schwarz交替过程的收敛速度,已成为人们感兴趣的问题。关于Schwarz算法收敛速度的讨论,许多文章都是对具体类型的微分方程展开的。  相似文献   

5.
We introduce a type of full multigrid method for the nonlinear eigenvalue problem. The main idea is to transform the solution of the nonlinear eigenvalue problem into a series of solutions of the corresponding linear boundary value problems on the sequence of finite element spaces and nonlinear eigenvalue problems on the coarsest finite element space. The linearized boundary value problems are solved by some multigrid iterations. Besides the multigrid iteration, all other efficient iteration methods for solving boundary value problems can serve as the linear problem solver. We prove that the computational work of this new scheme is truly optimal, the same as solving the linear corresponding boundary value problem. In this case, this type of iteration scheme certainly improves the overfull efficiency of solving nonlinear eigenvalue problems. Some numerical experiments are presented to validate the efficiency of the new method.  相似文献   

6.
Using the decomposition of solution of SDE, we consider the stochastic optimal control problem with anticipative controls as a family of deterministic control problems parametrized by the paths of the driving Wiener process and of a newly introduced Lagrange multiplier stochastic process (nonanticipativity equality constraint). It is shown that the value function of these problems is the unique global solution of a robust equation (random partial differential equation) associated to a linear backward Hamilton-Jacobi-Bellman stochastic partial differential equation (HJB SPDE). This appears as limiting SPDE for a sequence of random HJB PDE's when linear interpolation approximation of the Wiener process is used. Our approach extends the Wong-Zakai type results [20] from SDE to the stochastic dynamic programming equation by showing how this arises as average of the limit of a sequence of deterministic dynamic programming equations. The stochastic characteristics method of Kunita [13] is used to represent the value function. By choosing the Lagrange multiplier equal to its nonanticipative constraint value the usual stochastic (nonanticipative) optimal control and optimal cost are recovered. This suggests a method for solving the anticipative control problems by almost sure deterministic optimal control. We obtain a PDE for the “cost of perfect information” the difference between the cost function of the nonanticipative control problem and the cost of the anticipative problem which satisfies a nonlinear backward HJB SPDE. Poisson bracket conditions are found ensuring this has a global solution. The cost of perfect information is shown to be zero when a Lagrangian submanifold is invariant for the stochastic characteristics. The LQG problem and a nonlinear anticipative control problem are considered as examples in this framework  相似文献   

7.
In [3] a new method was introduced for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium. This method is based on the solution of a new class of boundary value problems for the reduced wave equation called interior transmission problems. In this paper it is shown that if there is absorption there exists at most one solution to the interior transmission problem and an approximate solution can be found such that the metaharmonic part is a Herglotz wave function. These results provide the necessary theoretical basis for the inverse scattering method introduced in [3]  相似文献   

8.
In this paper, we consider a class of optimal control problems involving a second-order, linear parabolic partial differential equation with Neumann boundary conditions. The time-delayed arguments are assumed to appear in the boundary conditions. A necessary and sufficient condition for optimality is derived, and an iterative method for solving this optimal control problem is proposed. The convergence property of this iterative method is also investigated.On the basis of a finite-element Galerkin's scheme, we convert the original distributed optimal control problem into a sequence of approximate problems involving only lumped-parameter systems. A computational algorithm is then developed for each of these approximate problems. For illustration, a one-dimensional example is solved.  相似文献   

9.
A method of solving stabilization problems by isolating a controlled subsystem of possibly smaller dimension [1, 2] is developed further. The stabilizing action is determined by the solution of an optimal stabilization problem [3] for a linear controlled subsystem. The control that is found is implemented in the form of a feedback loop that uses an estimate [4] of the state vector (or part of it) constructed by measuring the perturbations of the positional coordinates. The stability of the unperturbed motion in a complete closed system is established by reducing the problem to a special case of the theory of critical cases [5, 6] or to the problem of stability under constantly acting perturbations [6].  相似文献   

10.
Summary An optimal control problem is considered in a setting akin to that of the theory. of generalized curves. Rather than minimizing a functional depending on pairs of trajectories and controls subject to some constraints, a functional defined on a set of Radon measures is considered; the set of measures is determined by the constraints. An approximation scheme is developed, so that the solution of the optimal control problems can be effected by solving a sequence of nonlinear programming problems. Several existence theorems for this kind of generalized control problems are then proved; the most interesting is the one concerning problems in which the set of allowable controls is unbounded. Entrata in Redazione il 5 febbraio 1975.  相似文献   

11.
We consider a family of parametric linear-quadratic optimal control problems with terminal and control constraints. This family has the specific feature that the class of optimal controls is changed for an arbitrarily small change in the parameter. In the perturbed problem, the behavior of the corresponding trajectory on noncritical arcs of the optimal control is described by solutions of singularly perturbed boundary value problems. For the solutions of these boundary value problems, we obtain an asymptotic expansion in powers of the small parameter ?. The asymptotic formula starts from a term of the order of 1/? and contains boundary layers. This formula is used to justify the asymptotic expansion of the optimal control for a perturbed problem in the family. We suggest a simple method for constructing approximate solutions of the perturbed optimal control problems without integrating singularly perturbed systems. The results of a numerical experiment are presented.  相似文献   

12.
Parametric nonlinear control problems subject to vector-valued mixed control-state constraints are investigated. The model perturbations are implemented by a parameter p of a Banach-space P. We prove solution differentiability in the sense that the optimal solution and the associated adjoint multiplier function are differentiable functions of the parameter. The main assumptions for solution differentiability are composed by regularity conditions and recently developed second-order sufficient conditions (SSC). The analysis generalizes the approach in [16, 20] and establishes a link between (1) shooting techniques for solving the associated boundary value problem (BVP) and (2) SSC. We shall make use of sensitivity results from finite-dimensional parametric programming and exploit the relationships between the variational system associated to BVP and its corresponding Riccati equation.Solution differentiability is the theoretical backbone for any numerical sensitivity analysis. A numerical example with a vector-valued control is presented that illustrates sensitivity analysis in detail.  相似文献   

13.
We suggest an analytical-numerical method for solving a boundary value optimal control problem with state, integral, and control constraints. The embedding principle underlying the method is based on the general solution of a Fredholm integral equation of the first kind and its analytic representation; the method permits one to reduce the boundary value optimal control problem with constraints to an optimization problem with free right end of the trajectory.  相似文献   

14.
Septic spline is used for the numerical solution of the sixth-order linear, special case boundary value problem. End conditions for the definition of septic spline are derived, consistent with the sixth-order boundary value problem. The algorithm developed approximates the solution and their higher-order derivatives. The method has also been proved to be second-order convergent. Three examples are considered for the numerical illustrations of the method developed. The method developed in this paper is also compared with that developed in [M. El-Gamel, J.R. Cannon, J. Latour, A.I. Zayed, Sinc-Galerkin method for solving linear sixth order boundary-value problems, Mathematics of Computation 73, 247 (2003) 1325–1343], as well and is observed to be better.  相似文献   

15.
The problem of one-dimensional piston which at the beginning moves with increasing velocity into a gas at rest, then is decelerated, and finally stops, is solved by means of special series. The gas flow field is constructed by a successive joining of three characteristic Cauchy problems in terms of their characteristic solutions. Generalized solution of the problem of instantaneous arrest of the piston is derived. Obtained equations are used for the approximate calculation of the motion of generated shock waves.Representation of solutions of certain boundary value problems for nonlinear equations of the hyperbolic kind in the form of special series was proposed in [1, 2], The problem of the piston moving into a gas at rest is solved there, and the obtained solution was used for an approximate determination of the generated shock wave. The piston velocity was assumed to be monotonically increasing. That problem is solved here with the use of similar series in the case when the piston velocity is nonmonotonous,Numerical methods make it possible at present to determine one-dimensional flows similar to that considered below, and multidimensional problems can be solved by the method proposed in [1, 2]. The use of the proposed scheme for solving the problem of the multidimensional piston, whose velocity is nonmonotonous, does not present theoretical difficulties, but except that the formulas are more cumbersome.  相似文献   

16.
This article considers the problem of scheduling preemptive open shops to minimize total tardiness. The problem is known to be NP-hard. An efficient constructive heuristic is developed for solving large-sized problems. A branch-and-bound algorithm that incorporates a lower bound scheme based on the solution of an assignment problem as well as various dominance rules are presented for solving medium-sized problems. Computational results for the 2-machine case are reported. The branch-and-bound algorithm can handle problems of up to 30 jobs in size within a reasonable amount of time. The solution obtained by the heuristic has an average deviation of less than 2% from the optimal value, while the initial lower bound has an average deviation of less than 11% from the optimal value. Moreover, the heuristic finds approved optimal solutions for over 65% of the problems actually solved.  相似文献   

17.
The problem of transforming a linear dynamical system in the neighbourhood of a state of equilibrium [1,2] is solved using the special problem of the damping of the system by controls of minimum intensity after a finite time interval. The possibility of using other problems of optimal control is discussed. The main attention is devoted to constructing algorithms of the operation of a device (a stabilizer) which is able, in real time, to generate a stabilizing control circulating in the closed optimal system when unknown perturbations operate constantly [3, 4]. The proposed method is based on the constructive theory of optimal control [5, 6]. Another form of this theory for solving the problem of stabilization is presented in [7](see also [8]).  相似文献   

18.
A recent paper by Mehra has considered the design of optimal inputs for linear system identification. The method proposed involves the solution of homogeneous linear differential equations with homogeneous boundary conditions. In this paper, a method of solution is considered for similar-type problems with nonhomogeneous boundary conditions. The methods of solution are compared for the homogeneous and nonhomogeneous cases, and it is shown that, for a simple numerical example, the optimal input for the nonhomogeneous case is almost identical to the homogeneous optimal input when the former has a small initial condition, terminal time near the critical length, and energy input the same as for the homogeneous case. Thus tentatively, solving the nonhomogeneous problem appears to offer an attractive alternative to solving Mehra's homogeneous problem.  相似文献   

19.
A new method for solving boundary-value problems for the wave equation [1–3] with moving boundaries is used to obtain a solution of a boundary-value problem with boundary conditions of three types [4].  相似文献   

20.
The aim of this paper is to propose a new formulation of the fractional optimal control problems involving Mittag–Leffler nonsingular kernel. By using the Lagrange multiplier within the calculus of variations and by applying the fractional integration by parts, the necessary optimality conditions are derived in terms of a nonlinear two-point fractional boundary value problem. Based on the convolution formula and generalized discrete Grönwall’s inequality, the numerical scheme for solving this problem is developed and its convergence is proved. Numerical simulations and comparative results show that the suggested technique is efficient and provides satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号