首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cells were made from Co3O4 and Co2SnO4 and lithium metal and tested to determine reversible lithium capacity. Li is reversibly inserted into Co3O4, as was observed by electrochemistry, coupled with changes of cobalt oxidation state as observed by Co K-edge EXAFS. On lithium insertion the Co3O4 is reduced to yield only metallic cobalt species, and then on lithium removal an oxide of Co is formed. The EXAFS data further showed that the initial reduction was to Co(II) and then to metallic Co, and that both the metallic and oxide phases were disordered, having low co-ordination numbers and large shell spacings. The electrochemical behaviour of the Co2SnO4 cells was closer to that of SnO2 than Co3O4, but did exhibit changes obviously caused by the cobalt. EXAFS on Co2SnO4 cells revealed that the Co is reduced to metallic cobalt on the initial discharge, but does not convert back to an oxide on cycling. Paper presented at the 7th Euroconference on Ionics, Calcatoggio, Corsica, France, Oct. 1–7, 2000.  相似文献   

2.
S. M. Hasanaly  A. Mat  K. S. Sulaiman 《Ionics》2005,11(5-6):393-396
Silica doped tin oxide composites prepared by a sol gel method have been studied as negative electrode materials for lithium-ion batteries. The composite powders fired at 500 °C were analysed by means of XRD and SEM and showed that the composite consists of a blend of crystalline and amorphous structure with different particle size distribution. The electrochemical properties of this anode material were examined by charge-discharge measurements and cyclic voltammetry. The silica doped tin oxide composite anode, which was cycled between 0.1 to 2.0 V, showed a reversible capacity of 270 mAh/g. Paper presented at the International Conference on Functional Materials and Devices 2005, Kuala Lumpur, Malaysia, June 6 – 8, 2005.  相似文献   

3.
侯配玉  褚赓  高健  张彦涛  张联齐 《中国物理 B》2016,25(1):16104-016104
Progress in the research on phase transitions during Li+extraction/insertion processes in typical battery materials is summarized as examples to illustrate the significance of understanding phase transition phenomena in Li-ion batteries.Physical phenomena such as phase transitions(and resultant phase diagrams) are often observed in Li-ion battery research and already play an important role in promoting Li-ion battery technology. For example, the phase transitions during Li+insertion/extraction are highly relevant to the thermodynamics and kinetics of Li-ion batteries, and even physical characteristics such as specific energy, power density, volume variation, and safety-related properties.  相似文献   

4.
Silicon, an attractive candidate for high-energy lithium-ion batteries (LIBs), displays an alloying mechanism with lithium and presents several unique characteristics which make it an interesting scientific topic and also a technological challenge. In situ local probe measurements have been recently developed to understand the lithiation process and propose an effective remedy to the failure mechanisms. One of the most specific techniques, which is able to follow the phase changes in poorly crystallized electrode materials, makes use of Raman spectroscopy within the battery, i.e., in operando mode. Such an approach has been successful but is still limited by the rather signal-to-noise ratio of the spectroscopy. Herein, the operando Raman signal from the silicon anodes is enhanced by plasmonic nanoparticles following the known surface-enhanced Raman spectroscopy (SERS). Coinage metals (Ag and Au) display a surface plasmon resonance in the visible and allow the SERS effect to take place. We have found that the as-prepared materials reach high specific capacities over 1000 mAh/g with stability over more than 1000 cycles at 1C rate and can be suitable to perform as anodes in LIB. Moreover, the incorporation of coinage metals enables SERS to take place specifically on the surface of silicon. Consequently, by using a specially designed Raman cell, it is possible to follow the processes in a silicon-coinage metal-based battery trough operando SERS measurements.  相似文献   

5.
电动汽车与锂离子电池   总被引:2,自引:0,他引:2  
黄学杰 《物理》2015,44(1):1-7
文章简要介绍了混合动力汽车、插电式混合动力汽车、纯电动汽车和锂离子动力电池及其关键材料。发展电动汽车可以大幅度降低人们对石油的依赖和改善城市空气质量。锂离子电池性能优越,为电动汽车的发展提供了支撑。近期,新一代锂离子动力电池正极材料即将走向应用,可使电动汽车里程增加一倍,材料选择和电池设计及制造工艺与电池储存能量、寿命、安全等密切相关, 尊道而重德,可做出“好”电池。  相似文献   

6.
《Solid State Ionics》2006,177(35-36):3023-3029
Nanomaterials are becoming important for use in Li-ion battery electrodes as these can deliver increased capacity and improved power performance. Our work is focused on Mg-doped high-voltage spinel materials, such as LiNi0.5Mn1.5O4, in order to improve its stability. LiMgδNi0.5−δMn1.5O4 with δ = 0.05, having the cubic spinel structure (P4332) were made via four different synthesis routes – a solid-state route, a sol–gel method, a xerogel route and an auto ignition method.The powders were investigated with SEM and TEM analysis. XRD was used to determine the crystallographic structure. Electrochemical tests were performed in CR2320 coin cells built with 1 M LiPF6 in EC/EMC/DMC 1:2:2 as electrolyte and metallic Li as negative electrode – cells were measured with a MACCOR cycler.LiMg0.05Ni0.45Mn1.5O4 made via the sol–gel and xerogel routes revealed agglomerated nanoparticles with sizes ranging from 10 to 200 nm, whereas the auto ignition method gives particle sizes between 10 and 50 nm. Although agglomerated, often residual LiMn2O4 is observed, with increasing concentration going from solid-state, sol–gel, xerogel to auto ignition.Hence, thanks to these different synthesis routes, we are able to obtain particle sizes reaching from 10 to 200 nm, with a narrow particle size distribution. The electrochemical tests of the xerogel particles showed promising results. The auto ignition method show also promising results, however, the impurity phase needs to be suppressed significantly. The sol–gel method, the xerogel route and the auto ignition method show increased capacity retention at high power rates compared to the solid state method.  相似文献   

7.
The preparation of vanadium-modified olivine LiFePO4 was attempted using vanadium-modified FePO4 precursor which was synthesized by controlled crystallization. The structure and electrochemical behavior of V-LiFePO4 with different vanadium contents were investigated. The electrochemical behavior of V-LiFePO4 materials at high rate and low temperature was compared with that of the LiFePO4 material. Incorporation of vanadium improved the electrochemical performance of LiFePO4. The investigation showed that the 3%V-modified LiFePO4 presented the best electrochemical performance.  相似文献   

8.
When developing high performance lithium-ion batteries,high capacity is one of the key indicators.In the last decade,the progress of two-dimensional(2 D) materials has provided new opportunities for boosting the storage capacity.Here,based on first-principles calculation method,we predict that MnN monolayer,a recently proposed 2 D nodal-loop halfmetal containing the metallic element Mn,can be used as a super high-capacity lithium-ion batteries anode.Its theoretical capacity is above 1554 mA-h/g,more than four times that of graphite.Meanwhile,it also satisfies other requirements for a good anode material.Specifically,we demonstrate that MnN is mechanically,dynamically,and thermodynamically stable.The configurations before and after lithium adsorption exhibit good electrical conductivity.The study of Li diffusion on its surface reveals a very low diffusion barrier(~ 0.12 eV),indicating excellent rate performance.The calculated average open-circuit voltage of the corresponding half-cell at full charge is also very low(~0.22 V),which facilitates higher operating voltage.In addition,the lattice changes of the material during lithium intercalation are very small(~ 1.2%-~4.8%),which implies good cycling performance.These results suggest that 2 D MnN can be a very promising anode material for lithium-ion batteries.  相似文献   

9.
Improvement of the rate properties of orthorhombic LiVOPO4 by using a milling approach and acetylene black additives as electronic binder is investigated. The average particle size of orthorhombic LiVOPO4 was reduced from 12.0 μm to 6.1 μm by milling process by which the Li intercalation capacity into LiVOPO4 increased to 40 mAhg−1 at 0.4 mAcm−2 (C/5). At an optimized acetylene black amount of 15 wt.%, a better uniformity in particle size distribution and dispersion of the current distribution was obtained. Thus, enhancing the kinetic performance a fairly large reversible intercalation capacity of Li was achieved with values of 100 and 60 mAhg−1 at high rate conditions of C/5 (0.4 mAcm−2) and 1C (2 mAcm−2), respectively. Paper presented at the International Conference on Functional Materials and Devices 2005, Kuala Lumpur, Malaysia, June 6 – 8, 2005.  相似文献   

10.
吕迎春  刘亚利  谷林 《中国物理 B》2016,25(1):18209-018209
Lithium ion batteries are important electrochemical energy storage devices for consumer electronics and the most promising candidates for electrical/hybrid vehicles. The surface chemistry influences the performance of the batteries significantly. In this short review, the evolution of the surface structure of the cathode materials at different states of the pristine, storage and electrochemical reactions are summarized. The main methods for the surface modification are also introduced.  相似文献   

11.
《Solid State Ionics》2006,177(37-38):3297-3301
Two Si–Mn–C composites were obtained by sequentially ball milling the mixture of the silicon and manganese powders (atomic ratio of 3:5), followed by addition of 20 wt.% and 10 wt.% graphite, respectively. The phase structure and morphology of the composite were analyzed by X-ray diffraction (XRD) and scanning electromicroscopy (SEM). The results of XRD show that there is no new alloy phase in the composite obtained by mechanical ball milling. SEM micrographs confirm that the particle size of the Si–Mn–C composite is about 0.5–2.0 μm and the addition of graphite restrains the morphological change of active center (Si) during cycling. The Si–Mn particles are dispersed among the carbon matrix homogeneously, which ensures a good electrical contact between the active particles. Electrochemical tests show that the Si–Mn–C composite achieves better reversible capacity and cycleability. The Si–Mn–20 wt.% C composite electrode annealed at 200 °C for 2 h reveals an initial reversible capacity of 463 mAh·g 1 and retains 387 mAh·g 1 after 40 cycles.  相似文献   

12.
CoN films with nanoflake morphology are prepared by RF magnetron sputtering on Cu and oxidized Si substrates and characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED) techniques. The thickness and composition of the films are determined by the Rutherford back scattering (RBS) technique confirming the stoichiometric composition of CoN with a thickness, 200 (± 10) nm. Li-storage and cycling behavior of nanoflake CoN have been evaluated by galvanostatic discharge–charge cycling and cyclic voltammetry (CV) in cells with Li–metal as counter electrode in the range of 0.005–3.0 V at ambient temperature. Results show that a first-cycle reversible capacity of 760 (± 10) mAhg? 1 at a current rate 250 mAg? 1(0.33 C) increases consistently to yield a capacity of 990 (± 10) mAhg? 1 after 80 cycles. The latter value corresponds to 2.7 mol of cyclable Li/mol of CoN vs. the theoretical, 3.0 mol of Li. Very good rate capability is shown when cycled at 0.59 C (up to 80 cycles) and at 6.6 C (up to 50 cycles). The coloumbic efficiency is found to be 96–98% in the range of 10–80 cycles. The average charge and discharge potentials are 0.7 and 0.2 V, respectively for the decomposition/formation of Li3N as determined by CV. However, cycling to an upper cut-off voltage of 3.0 V is essential for the completion of the “conversion reaction”. Based on the ex-situ-XRD, -HR-TEM and -SAED data, the plausible Li-cycling mechanism is discussed. The results show that nanoflake CoN film is a prospective anode material for Li-ion batteries.  相似文献   

13.
A simple method was proposed to prepare nanosized Si composite anode materials for lithium-ion (Li-ion) batteries. The preparation started with the shock-type ball milling of silicon in liquid media of polyacrylonitrile (PAN)/dimethylformamide (DMF) solution, forming slurry where the nano-Si particles were uniformly dispersed, followed by the drying of the slurry to remove DMF. The nanosized Si composite anode material was obtained after the pyrolysis of the mixture at 300 °C where the pyrolyzed PAN provided a conductive matrix to relieve the morphological change of Si during cycling. As-prepared composite presented good cyclability for lithium storage. The proposed process paves an effective way to prepare high performance Si, Sn, Sb and their alloys based composite anode materials for Li-ion batteries.  相似文献   

14.
The performances of Li-ion batteries depend on many factors amongst which the important ones are the electrode materials and their structural and electronic evolution upon cycling. For a better understanding of lithium reactivity mechanism of many materials the combination of X-Ray Powder Diffraction (XRPD) and Transmission Mössbauer Spectroscopy (TMS) providing both structural and electronic information during the electrochemical cycling has been carried out. Thanks to the design of a specific electrochemical cell, derived from a conventional Swagelock cell, such measurements have been realised in operando mode. Two examples illustrate the greatness of combining XRPD and TMS for the study of LiFe0.75Mn0.25PO4 as positive electrode and TiSnSb as negative electrode. Different kinds of insertion or conversion reactions have been identified leading to a better optimization and design of performing electrodes.  相似文献   

15.
Ling Li  Hui Wu 《辐射效应与固体损伤》2013,168(11-12):1068-1074
Abstract

The operating durability of lithium-ion batteries is a principal problem in universe exploration or rescuing work in the nuclear radiation area. In the study, the neutron irradiation experiments were conducted on film-tin electrodes using the radiation dose of 1011, 1012, 1013 and 1014?n?cm?2, respectively. The results show that the particle size grows with the increasing radiation does by atomic force microscopy (AFM) and scanning electron microscope (SEM). In addition, the degressive trend of specific capacity of tin anodes after neutron radiations increases with the increasing radiation dose. The fade of electrochemical performances may be attributed to the increasing particle size and defects induced by neutron radiation.  相似文献   

16.
Pure single-phase Li2MnSiO4 nanoparticle-embedded carbon nanofibers have been prepared for the first time via a simple sol-gel and electrospinning technique. They exhibit an improved electrochemical performance over conventional carbon-coated Li2MnSiO4 nanoparticle electrodes, including a high discharge capacity of ~200 mAh g?1, at a C/20 rate, with the retention of 77 % over 20 cycles and a 1.6-fold higher discharge capacity at a 1 C rate.  相似文献   

17.
C. Julien  M. Massot 《Ionics》2002,8(1-2):6-16
We present the vibrational properties of manganese dioxides and lithiated oxides with either spinel-type and layered-type structure used as positive electrodes in Li-ion batteries. The local structure in γ-MnO2 is investigated as a function of the intergrowth rate, Pr, of pyrolusite in the ramsdellite matrix and the phase evolution as a function of the degree of intercalation or deintercalation in 4-volt electrode materials Li1−xCoO2 and Li1−xMn2O4. Lattice dynamics are studied using either a classical group theoretical analysis or a local environment model. Raman and FTIR bands are identified on the basis of vibrational modes of polyhedral units which are building the structure. Structural modifications induced by intercalation-deintercalation process are examined. Paper presented at the 8th EuroConference on Ionics, Carvoeiro, Algarve, Portugal, Sept. 16–22, 2001.  相似文献   

18.
Preparation of P(AN-MMA) gel electrolyte for Li-ion batteries   总被引:1,自引:0,他引:1  
Phase inversion technique was used to prepare poly(acrylonitrile-methyl methacrylate) [P(AN-MMA)]-based microporous gel electrolyte with addition of SiO2 via in-situ composition for Li-ion batteries. The P(AN-MMA) was synthesized by emulsion polymerization and was dissolved into N,N-dimethylformamide (DMF) to form a uniform solution, while tetraethyl orthosilicate (TEOS) was added into the solution and was hydrolyzed by catalysis of alkali ammonia solution to form SiO2. Then the solution was cast onto a glass plate using a doctor blade and exposed to humidified atmosphere produced by ultrasonic humidifier, followed by washing, rinsing, and drying, successively. The gel electrolyte was obtained by putting the P(AN-MMA) microporous membrane in a liquid electrolyte. The gelled microporous membrane sucked with 755 wt% of liquid electrolyte vs the dried membrane. It had a porosity of 70%, about 1∼5 μm of pores, and presented an ionic conductivity of 0.94 × 10−3 S/cm at room temperature. Electrochemical stability window of the porous gel polymer electrolyte was determined by running a linear sweep voltammetry. The decomposition voltage of the polymer electrolyte exceeds 4.5 V vs Li. The coin test cell with the microporous gel electrolyte showed a good cycling performance. The discharge capacity retention was above 87% at 0.1 C for 45 cycles.  相似文献   

19.
吴木生  徐波  欧阳楚英 《中国物理 B》2016,25(1):18206-018206
The physics of ionic and electrical conduction at electrode materials of lithium-ion batteries(LIBs) are briefly summarized here, besides, we review the current research on ionic and electrical conduction in electrode material incorporating experimental and simulation studies. Commercial LIBs have been widely used in portable electronic devices and are now developed for large-scale applications in hybrid electric vehicles(HEV) and stationary distributed power stations. However,due to the physical limits of the materials, the overall performance of today's LIBs does not meet all the requirements for future applications, and the transport problem has been one of the main barriers to further improvement. The electron and Li-ion transport behaviors are important in determining the rate capacity of LIBs.  相似文献   

20.
Review of 5-V electrodes for Li-ion batteries: status and trends   总被引:1,自引:0,他引:1  
C. M. Julien  A. Mauger 《Ionics》2013,19(7):951-988
Lithium-ion batteries have dominated the battery industry for the past several years in portable electronic devices due to their high volumetric and gravimetric energy densities. The success of these batteries in small-scale applications translates to large-scale applications, with an important impact in the future of the environment by improving energy efficiency and reduction of pollution. We present the progress that allows several lithium-intercalation compounds to become the active cathode element of a new generation of Li-ion batteries, namely the 5-V cathodes, which are promising to improve the technology of energy storage and electric transportation, and address the replacement of gasoline engine by meeting the increasing demand for green energy power sources. The compounds considered here include spinel LiNi0.5Mn1.5O4 and its related doped-structures, olivine LiCoPO4, inverse spinel LiNiVO4 and fluorophosphate Li2CoPO4F. LiNi0.5Mn1.5O4 thin films, nanoscale prepared materials and surface-modified cathode particles are also considered. Emphasis is placed on the quality control that is needed to guarantee the reliability and the optimum electrochemical performance of these materials as the active cathode element of Li-ion batteries. The route to increase the performance of Li-ion batteries with the other members of the family is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号