首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some theorems on complete instability of the zero solution relative to a set for nonautonomous nonlinear equations with infinite delay are provided. The right-hand side of the equation is assumed to be defined in a fading memory space and to satisfy conditions that allow the construction of limiting equations. We use conceptions of Lyapunov-Razumikhin pairs and limiting equations to obtain new instability results, which are applicable, in particular, to autonomous, periodic and almost periodic in t delay differential equations.  相似文献   

2.
We study the orbital stability and instability of single-spike bound states of semi-classical nonlinear Schrödinger (NLS) equations with critical exponent, linear and nonlinear optical lattices (OLs). These equations may model two-dimensional Bose-Einstein condensates in linear and nonlinear OLs. When linear OLs are switched off, we derive the asymptotic expansion formulas and obtain necessary conditions for the orbital stability and instability of single-spike bound states, respectively. When linear OLs are turned on, we consider three different conditions of linear and nonlinear OLs to develop mathematical theorems which are most general on the orbital stability problem.  相似文献   

3.
In this paper, we consider the nonlinear instability of incompressible Euler equations. If a steady density is non-monotonic, then the smooth steady state is a nonlinear instability. First, we use variational method to find a dominant eigenvalue which is important in the construction of approximate solutions, then by energy technique and analytic method, we obtain the dynamical instability result.  相似文献   

4.
The dynamics of a circular cylindrical shell carrying a rigid disk on the top and clamped at the base is investigated. The Sanders–Koiter theory is considered to develop a nonlinear analytical model for moderately large shell vibration. A reduced order dynamical system is obtained using Lagrange equations: radial and in-plane displacement fields are expanded by using trial functions that respect the geometric boundary conditions.The theoretical model is compared with experiments and with a finite element model developed with commercial software: comparisons are carried out on linear dynamics.The dynamic stability of the system is studied, when a periodic vertical motion of the base is imposed. Both a perturbation approach and a direct numerical technique are used. The perturbation method allows to obtain instability boundaries by means of elementary formulae; the numerical approach allows to perform a complete analysis of the linear and nonlinear response.  相似文献   

5.
In this paper we investigate the effect of a prescribed superficial shear stress on the generation and structure of roll waves developing from infinitesimal disturbances on the surface of a power-law fluid layer flowing down an incline. The unsteady equations of motion are depth integrated according to the von Kármán momentum integral method to obtain a non-homogeneous system of nonlinear hyperbolic conservation laws governing the average flow rate and the thickness of the fluid layer. By conducting a linear stability analysis we obtain an analytical formula for the critical conditions for the onset of instability of a uniform and steady flow in terms of the prescribed surface shear stress. A nonlinear analysis is performed by numerically calculating the nonlinear evolution of a perturbed flow. The calculation is carried out using a high-resolution finite volume scheme. The source term is handled by implementing the quasi-steady wave propagation algorithm. Conclusions are drawn regarding the effect of the applied surface shear stress parameter and flow conditions on the development and characteristics of the roll waves arising from the instability. For a Newtonian flow subjected to a prescribed superficial shear stress, using an analytical theory, we show that the nonlinear governing equations do not admit roll waves solutions under conditions when the uniform and steady flow is linearly stable. For the case of a general power-law fluid flow with zero shear stress applied at the surface, the analytical investigation leads to a procedure for calculating the characteristics of a roll waves flow. These results are compared with those yielded by the numerical procedure.  相似文献   

6.
《Applied Mathematics Letters》2006,19(11):1185-1190
The dressing procedure is used to obtain explicit expressions for homoclinic connections of unstable plane waves of the Manakov system of coupled nonlinear Schrödinger equations.  相似文献   

7.
In this paper, we consider a nonlinear system of reaction diffusion equations arising from mathematical neuroscience and two nonlinear scalar reaction diffusion equations under some assumptions on their coefficients. The main purpose is to couple together linearized stability criterion (the equivalence of the nonlinear stability, the linear stability and the spectral stability of the standing pulse solutions) and Evans functions to accomplish the existence and instability of standing pulse solutions of the nonlinear system of reaction diffusion equations and the nonlinear scalar reaction diffusion equations. The Evans functions for the standing pulse solutions are constructed explicitly.  相似文献   

8.
Flexible plate structures with large deflection and rotation are commonly used structures in engineering. How to analyze and solve the cantilever plate with large deflection and rotation is still an unsolved problem. In this paper, a general nonlinear flexible rectangular cantilever plate considering large deflection and rotation angle is modeled, solved and analyzed. Hamilton's principle is applied to obtain the nonlinear differential dynamic equations and boundary conditions by introducing a coordinate transformation between the Cartesian coordinate system and the deformed local coordinate system. Stress function relating to in-plane force resultants and shear forces is given for the first time for complex coupling equations caused by coordinate transformation. The nonlinear equations and the solving method are validated by experiments. Then, harmonic balance method is adopted to get the nonlinear frequency-response curves, which shows strong hardening spring characteristic of this system. Runge–Kutta methods are used to reveal complex nonlinear behaviors such as 5 super-harmonic resonance, bifurcations and chaos for general nonlinear flexible rectangular cantilever plate.  相似文献   

9.
A theoretical analysis of the parametric harmonic response of two resonant modes is made based on a cubic nonlinear system. The analysis based on the method of multiple scales. Two types of the modified nonlinear Schrödinger equations with complex coefficients are derived to govern the resonance wave. One of these equations contains the first derivatives in space for a complex-conjugate type as well as a linear complex-conjugate term that is valid in the second-harmonic resonance cases. The second parametric equation contains a complex-conjugate type which is valid at the third-subharmonic resonance case. Estimates of nonlinear coefficients are made. The resulting equations have an interesting in many dynamical and physical cases. Temporal modulational method is confirmed to discuss the stability behavior at both parametric second- and third-harmonic resonance cases. Furthermore, the Benjamin–Feir instability is discussed for the sideband perturbation. The instability behavior at the sharp resonance is examined and the existence of the instability is found.  相似文献   

10.
In the present paper, the dynamic stability of circular cylindrical shells is investigated; the combined effect of compressive static and periodic axial loads is considered. The Sanders–Koiter theory is applied to model the nonlinear dynamics of the system in the case of finite amplitude of vibration; Lagrange equations are used to reduce the nonlinear partial differential equations to a set of ordinary differential equations. The dynamic stability is investigated using direct numerical simulation and a dichotomic algorithm to find the instability boundaries as the excitation frequency is varied; the effect of geometric imperfections is investigated in detail. The accuracy of the approach is checked by means of comparisons with the literature.  相似文献   

11.
波纹壳的格林函数方法   总被引:6,自引:1,他引:5  
应用轴对称旋转扁壳的基本方程,研究了在任意载荷作用下具有型面锥度的浅波纹壳的非线性弯曲问题· 采用格林函数方法,将扁壳的非线性微分方程组化为非线性积分方程组· 再使用展开法求出格林函数,即将格林函数展成特征函数的级数形式,积分方程就成为具有退化核的形式,从而容易得到非线性代数方程组· 应用牛顿法求解非线性代数方程组时,为了保证迭代的收敛性,选取位移作为控制参数,逐步增加位移,求得相应的载荷· 在算例中,研究了具有球面度的浅波纹壳的弹性特征· 结果表明,由于型面锥度的引入,特征曲线发生显著变化,随着荷载的增加,将出现类似扁球壳的总体失稳现象· 本文的解答符合实验结果·  相似文献   

12.
The tethered satellite system is characterized by weak nonlinearities but it practically works in conditions of internal resonance which produces unstable oscillations. The effect of a longitudinal control force is investigated. Since the displacement component in the orbit plane is always present in the motion due to the nonlinear coupling, the control force is assumed depending only on this component and also when a prevailing out-of-plane oscillation is considered. The harmonic balance method and numerical solutions of amplitude modulated equations are used to obtain stationary and nonstationary oscillations, respectively; the Floquet theory is followed in the stability analysis. The assumed control force is shown to be effective in reducing the primary and secondary instability regions of oscillations perturbed by internally resonant disturbance components.  相似文献   

13.
We consider linear instability of solitary waves of several classes of dispersive long wave models. They include generalizations of KDV, BBM, regularized Boussinesq equations, with general dispersive operators and nonlinear terms. We obtain criteria for the existence of exponentially growing solutions to the linearized problem. The novelty is that we dealt with models with nonlocal dispersive terms, for which the spectra problem is out of reach by the Evans function technique. For the proof, we reduce the linearized problem to study a family of nonlocal operators, which are closely related to properties of solitary waves. A continuation argument with a moving kernel formula is used to find the instability criteria. These techniques have also been extended to study instability of periodic waves and of the full water wave problem.  相似文献   

14.
We introduce a nonlinear perturbation technique to third order, to study the stability between two cylindrical inviscid fluids, subjected to an axial electric field. The study takes into account the relaxation of electrical charges at the interface between the two fluids. At first order, a linear dispersion relation is obtained. Analytical and numerical results for the overstability and incipient instability conditions are given. For perfect dielectric fluids, the electric field has a stabilizing influence, while for leaky dielectric fluids, the electric field can have either a stabilizing or a destabilizing influence depending on the conductivity and permittivity ratios of the two fluids. At higher order, a nonlinear dispersion relation (nonlinear Ginzburg–Landau equation) is derived, describing the evolution of wave packets of the problem. For leaky dielectric fluids near the marginal state, a nonlinear diffusion equation (nonlinear incipient instability) is obtained. For perfect dielectric fluids, two cubic nonlinear Schrödinger equations are obtained. One of these equations to determine a nonlinear cutoff electric field separating stable and unstable disturbance, whereas the other is used to analyze the stability of the system. It is found that the nonlinear stability criterion depending on the ratio of permittivity, Such effects can only be explained successfully in the nonlinear sense, as the linear analysis unsuccessful to inform about them.  相似文献   

15.
This paper investigates the stability of traveling wave solutions to the free boundary Euler equations with a submerged point vortex. We prove that sufficiently small-amplitude waves with small enough vortex strength are conditionally orbitally stable. In the process of obtaining this result, we develop a quite general stability/instability theory for bound state solutions of a large class of infinite-dimensional Hamiltonian systems in the presence of symmetry. This is in the spirit of the seminal work of Grillakis, Shatah, and Strauss (GSS) , but with hypotheses that are relaxed in a number of ways necessary for the point vortex system, and for other hydrodynamical applications more broadly. In particular, we are able to allow the Poisson map to have merely dense range, as opposed to being surjective, and to be state-dependent. As a second application of the general theory, we consider a family of nonlinear dispersive PDEs that includes the generalized Korteweg–de Vries (KdV) and Benjamin-Ono equations. The stability or instability of solitary waves for these systems has been studied extensively, notably by Bona, Souganidis, and Strauss , who used a modification of the GSS method. We provide a new, more direct proof of these results, as a straightforward consequence of our abstract theory. At the same time, we allow fractional dispersion and obtain a new instability result for fractional KdV. © 2020 Wiley Periodicals, Inc.  相似文献   

16.
In this paper, we introduce a spectral collocation method based on Lagrange polynomials for spatial derivatives to obtain numerical solutions for some coupled nonlinear evolution equations. The problem is reduced to a system of ordinary differential equations that are solved by the fourth order Runge–Kutta method. Numerical results of coupled Korteweg–de Vries (KdV) equations, coupled modified KdV equations, coupled KdV system and Boussinesq system are obtained. The present results are in good agreement with the exact solutions. Moreover, the method can be applied to a wide class of coupled nonlinear evolution equations.  相似文献   

17.
We investigate the nonlinear instability of a smooth steady density profile solution to the three-dimensional nonhomogeneous incompressible Navier-Stokes equations in the presence of a uniform gravitational field, including a Rayleigh-Taylor steady-state solution with heavier density with increasing height (referred to the Rayleigh-Taylor instability). We first analyze the equations obtained from linearization around the steady density profile solution. Then we construct solutions to the linearized problem that grow in time in the Sobolev space H k , thus leading to a global instability result for the linearized problem. With the help of the constructed unstable solutions and an existence theorem of classical solutions to the original nonlinear equations, we can then demonstrate the instability of the nonlinear problem in some sense. Our analysis shows that the third component of the velocity already induces the instability, which is different from the previous known results.  相似文献   

18.
The system of equations describing the shallow‐water limit dynamics of the interface between two layers of immiscible fluids of different densities is formulated. The flow is bounded by horizontal top and bottom walls. The resulting equations are of mixed type: hyperbolic when the shear is weak and the behavior of the system is internal‐wave like, and elliptic for strong shear. This ellipticity, or ill‐posedness is shown to be a manifestation of large‐scale shear instability. This paper gives sharp nonlinear stability conditions for this nonlinear system of equations. For initial data that are initially hyperbolic, two different types of evolution may occur: the system may remain hyperbolic up to internal wave breaking, or it may become elliptic prior to wave breaking. Using simple waves that give a priori bounds on the solutions, we are able to characterize the condition preventing the second behavior, thus providing a long‐time well‐posedness, or nonlinear stability result. Our formulation also provides a systematic way to pass to the Boussinesq limit, whereby the density differences affect buoyancy but not momentum, and to recover the result that shear instability cannot occur from hyperbolic initial data in that case.  相似文献   

19.
Based on the homotopy analysis method, the nonlinear vibration of porous functionally graded material (FGM) conveying pipes under generalized boundary conditions was studied. Based on the power-law distribution of the FGM and the Voigt model, the physical properties of the porous pipe material were described. Under the Euler-Bernoulli beam theory and the von Kármán nonlinear theory, and by means of Hamilton’s variational principle, the dynamic control equations and generalized boundary conditions for porous FGM conveying pipes were established. The homotopy analysis method was used to solve the nonlinear vibration characteristics of the porous FGM conveying pipe under generalized boundary conditions. The numerical results show that, the translation spring has little effect on the critical velocity of instability, while the rotation spring increases the critical velocity of instability, making the system more stable; in the nonlinear system, the viscoelastic coefficient does not change the critical velocity; the pipe length, the power-law exponent and the porosity all influence the nonlinear free vibration of the porous FGM conveying pipe. © 2023 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

20.
The nonlinear localized excitations and gap multi-instability phenomena in the array of optical fibers are investigated analytically by means of the method of multiple scales combined with the averaging method. The perturbative analysis in nonlinear discrete systems leads to a system of four coupled nonlinear oscillated equations without second members. The method of multiple scales is used to show the different possibilities of instability. The averaging method is considered to show how the angular frequency received the perturbation with the evolution of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号