首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The catalytic oxidation of methane was studied over calcined and reduced Pt–Pd/γ-Al2O3 catalysts, in the presence and the absence of SO2 in the CH4–O2 reaction feed. The effect of sulfation (SO2 + O2 for 4 h at 500 °C) was also studied on the catalyst resistance to deactivation by sulfur poisoning. Sulfating the calcined Pt–Pd/γ-Al2O3 catalysts resulted in a strong deactivation for the CH4–O2 reaction. However, the catalytic activity of the reduced-sulfated Pt–Pd/γ-Al2O3 catalyst for CH4–O2 reaction remained rather unaffected in the presence and in the absence of SO2 in the reaction feed. XPS analysis revealed, over reduced-sulfated Pt–Pd/γ-Al2O3 catalysts, the presence of Pt(0) metallic surface species on which SO2 interactions may be faster related to Pd surface species. The presence of Pt(0) may be necessary to prevent the interactions between SO2 and Pd surface species. Long time catalytic tests showed that the activity of a reduced Pt–Pd/γ-Al2O3 catalysts for CH4–O2 reactions remained rather unaffected despite the presence of SO2 in the reaction feed.  相似文献   

2.
The activity of knitted silica-fibre supported Pd, Pt, Pt-Ni, Pd-Ni and Pd-Pt-Ni catalysts as well as Pd based H-ZSM-5 and H-ZSM-35 catalysts was studied in the conversion of gas mixtures containing 200 ppm CH4, 2500 ppm CO, 500 ppm pyridine (or 500 ppm NO), 10 vol.% O2 (or 0.155 vol.% O2), 12 vol.% CO2, 12 vol.% H2O, balanced with He at GHSV of 60000 h–1. Pyridine was found to inhibit both CO and CH4 oxidation. IR studies indicated that NO adsorbed on Pd2+ is the principal adsorbed species on the Pd/HZSM-5 catalyst.  相似文献   

3.
Uniformly loaded Pd–SnO2 nanorods are synthesized via a simple one-step hydrothermal route. The gas sensors fabricated from Pd–SnO2 nanorods exhibit high sensitivity and fast response. The sensor response at 300 °C is up to 9.9, 36.8, 55.6, 89.1 and 168.2 upon exposure to 100, 200, 300, 500 and 1000 ppm ethanol, respectively. And the work temperature can be lowered down to 200 °C. Such behaviors can be attributed to Schottky barrier at Pd/SnO2 interface and catalytic effect of Pd nanoparticles. Our results open a way for uniform modification of SnO2 nanorods with Pd nanoparticles and enhancing their gas sensing performance.  相似文献   

4.
The sensitivity of semiconductor sensors based on tin (SnO2), tungsten (WO3), and zinc (ZnO) oxides and SnO2 with catalytic admixtures of La2O3 and CuO to hydrogen sulfide is studied at H2S concentration 50 ppm in dry air in the temperature range 100–600°C. Concentration dependences for oxides are studied in the temperature range 350–450°C and H2S concentration range 0.5–100 ppm at the humidity of gas media 0–80 rel. %. It is shown that, under the specified conditions, the resistance and of sensors to H2S in air weakly depends on humidity. It was found that sensors based on SnO2 with an admixture of 3% La2O3 working at 350°C are the best for the registration of H2S by the set of performance and operation characteristics. A presumable mechanism of H2S interaction with oxide surfaces is considered, according to which each H2S molecule releases seven electrons to the conductivity zone of the oxide and molecules of metal oxides in the surface layer are, possibly, partially replaced by sulfide molecules.  相似文献   

5.
《Mendeleev Communications》2022,32(3):405-407
The flammability limits of stoichiometric mixtures (20–80% H2 + 80–20% CH4) + O2 over Rh and Pd were determined in the pressure range 0–200 Torr and the temperature range 200–500 °C. It has been shown that the dark reaction in the mixture (80% H2 + 20% C4H8)stoich + O2 leads to the formation of carbon nanotubes with a mean diameter of 10–100 nm.  相似文献   

6.
Approaches to increase the efficiency of Pt/C–heteropoly acid catalyst in a liquid-phase oxidation of cyclohexane using an O2–H2 mixture were studied. It was shown that small additives of ionic liquid (BMImBr, Bu4NBr, or Bu4NHSO4) significantly improve the catalytic effect of the Pt/C–H3PMo12O40–CH3CN system at 35°C, by slowing the rate of side reactions resulting in water formation, increasing the rate of oxygenate formation, and inhibiting their secondary oxidation reactions. The efficiency of H2 consumption increases from 2 to 18–25%, while the selectivity of cyclohexane conversion is 92–98%. The substitution of one or two Mo(VI) ions by V(V) in the structure of the heteropoly acid decreases these parameters. In the presence of Bu4NHSO4, a Pt/C catalyst can be used many times. During the reaction, the heteropoly acid present in the solution is in a reduced state under the action of the reaction medium and undergoes reversible redox transformations. The nature of the catalytic action of the studied system is explained from the viewpoint of the effect of ionic liquids on the properties of a Pt/C catalyst in activating O2, heteropoly molybdate chemistry, and the known mechanisms of the peroxide oxidation of hydrocarbons.  相似文献   

7.
The catalytic decarboxylation of phenyl fluoroformate to fluorobenzene has been achieved with yields of 70–80% in a flow system using alumina or alumina-based catalysts. The reaction occurs in short space times (<1 s) and with optimal efficiency at ca. 300 °C (some 500 °C lower than the temperature required for the thermal decomposition of the fluoroformate). Impregnation of the alumina with a platinum group metal gave the following order of catalytic activity; Pt/Al2O3>Pd/Al2O3>Rh/Al2O3≈Al2O 3.2,4,6-Trimethlyphenyl flouroformate, a new material, was found to decarboxylate similarly to give 1-flouro-2,4,6-trimethylbenzene, but 4-chlorophenyl flouroformate was noted to produce only low yields (~10%) of the corresponding arly flouride  相似文献   

8.
Specimens of tin dioxide with modifying Sb and Pt additives are synthesized. Their physicochemical properties (specific surface area, porosity, and conductivity), chemisorption and catalytic activity in the model reaction of CO oxidation are studied. A considerable chemisorption of CO on SnO2 and SnO2-SbO x is observed at 150–180°C. The oxidation of CO in the flow of gases starts in the same temperature range. An addition of platinum leads to a significant increase in the rate of CO oxidation, the reaction starts at 80°C. It is proposed that the process proceeds at the SnO2/Pt interface.  相似文献   

9.
The effects of the Pd content (0–1 wt %) and the synthesis method (joint impregnation with Ni + Pd and Pd/Ni or Ni/Pd sequential impregnation) on the physicochemical and catalytic properties of Ni–Pd/CeZrO2/Al2O3 were studied in order to develop an efficient catalyst for the conversion of methane into hydrogen-containing gas. It was shown that variation in the palladium content and a change in the method used for the introduction of an active constituent into the support matrix make it possible to regulate the redox properties of nickel cations but do not affect the size of NiO particles (14.0 ± 0.5 nm) and the phase composition of the catalyst ((γ + δ)-Al2O3, CeZrO2 solid solution, and NiO). It was established that the activity of Ni–Pd catalysts in the reaction of autothermal methane reforming depends on the method of synthesis and increases in the following order: Ni + Pd < Ni/Pd < Pd/Ni. It was found that, as the Pd content of the Ni–Pd/CeZrO2/Al2O3 catalyst was decreased from 1 to 0.05 wt %, the ability for self-activation, high activity, and operational stability of the catalyst under the conditions of autothermal methane reforming remained unaffected: at 850°C, the yield of hydrogen was ~70% at a methane conversion of ~100% during a 24-h reaction.  相似文献   

10.
《中国化学快报》2020,31(8):2029-2032
In this paper, the Pt/SnO2 nanostructures were prepared via a facile one-step microwave assisted hydrothermal route. The structure of the introduced Pt/SnO2 and its gas-sensing properties toward CO were investigated. The results from the TEM test reveal that Pt grows on the SnO2 nanostructure, which was not found for bulk in this situ method, constructing Pt/SnO2. The results indicated that the sensor using 3.0 wt% Pt/SnO2 to 100 ppm carbon monoxide performed a superior sensing properties compared to 1.5 wt% and 4.5 wt% Pt/SnO2 at 225 °C. The response time of 3.0 wt% sensor is 16 s to 100 ppm CO at 225 °C. Such enhanced gas sensing performances could be attributed to the chemical and electrical factors. In view of chemical factors, the presence of Pt facilitates the surface reaction, which will improve the gas sensing properties. With respect to the electrical factors, the Pt/SnO2 plays roles in increasing the sensor’s response due to its characteristic configuration. In addition, the one-step in situ microwave assisted process provides a promising and versatile choice for the preparation of gas sensing materials.  相似文献   

11.
A series of SnO2‐TiO2 binary oxide catalysts prepared by co‐current precipitation method was found to be a novel and good system for the selective catalytic reduction of NO by propene in the presence of oxygen with high activity and good selectivity to N2. The NO conversion to N2 over SnO2‐TiO2 oxide catalysts varied with SnO2 content and attainted a maximum at 65% over the catalyst with SnO2 content at 40wt% for a feed with 1186 ppm NO, 948 ppm propene and 2.23% O2, in He and a space velocity of 15000 h?1 at 350°C. The SnO2TiO2 catalysts could sustain moderate activity in the presence of 10% steam. Because of the identical valence and the similar radius of Sn4+ and Ti4+, SnO2‐TiO2 binary oxides can form solid solution in three different phases as proved by XRD, electron diffraction and TPR. Sn4+ is the main active species in the SnO2‐TiO2 catalysts, and it is enriched on the solid solution surface as tested by XPS analysis. H2‐TPR, NH3‐TPD and BET tests show that SnO2‐TiO2 solid solution can dilute SnO2 and suppress the activity of propene complete oxidation over SnO2. This may be beneficial to the reactivity enhancement of NO conversion.  相似文献   

12.
Herein, we report on the synthesis of ultrasmall Pd nanoclusters (∼2 nm) protected by L-cysteine [HOCOCH(NH2)CH2SH] ligands (Pdn(L-Cys)m) and supported on the surfaces of CeO2, TiO2, Fe3O4, and ZnO nanoparticles for CO catalytic oxidation. The Pdn(L-Cys)m nanoclusters supported on the reducible metal oxides CeO2, TiO2 and Fe3O4 exhibit a remarkable catalytic activity towards CO oxidation, significantly higher than the reported Pd nanoparticle catalysts. The high catalytic activity of the ligand-protected clusters Pdn(L-Cys)m is observed on the three reducible oxides where 100 % CO conversion occurs at 93–110 °C. The high activity is attributed to the ligand-protected Pd nanoclusters where the L-cysteine ligands aid in achieving monodispersity of the Pd clusters by limiting the cluster size to the active sub-2-nm region and decreasing the tendency of the clusters for agglomeration. In the case of the ceria support, a complete removal of the L-cysteine ligands results in connected agglomerated Pd clusters which are less reactive than the ligand-protected clusters. However, for the TiO2 and Fe3O4 supports, complete removal of the ligands from the Pdn(L-Cys)m clusters leads to a slight decrease in activity where the T100% CO conversion occurs at 99 °C and 107 °C, respectively. The high porosity of the TiO2 and Fe3O4 supports appears to aid in efficient encapsulation of the bare Pdn nanoclusters within the mesoporous pores of the support.  相似文献   

13.
Annealed laminates of YBa2Cu3Oy films on AgPd, SnO2 and Pt substrates were investigated by metallography, EPMA, and XDA. Thin homogeneous layers of Ba2SnO4 and BaZrO3 (in case of a ZrO2 diffusion barrier onto one side of AgPd) between ceramic and SnO2 or AgPd substrates were found. The adjacent interface is inhomogeneous and Y free for both substrates (for Pt two exist). The composition of their major phase could be shown to be a Ba2Cu3O5 type with Pd partitions instead for Cu (in case of ZrO2 contact), a YBa2Cu3Oy type without Y, but containing Pd (+ Ag) (in case of AgPd contact), Ba2SnO4 precipitates and BaCuO2, CuO particles are mixtures (SnO2 contact). Pt seems not to participate to any phase constituents; the two interfaces differ in the fine distribution of the phases concerned and therefore in the mean value of Ba, Cu, Pt concentrations.  相似文献   

14.
The Syntheses and Vibrational Spectra of the Homoleptic Metal Acetonitrile Cations [Au(NCCH3)2]+, [Pd(NCCH3)4]2+, [Pt(NCCH3)4]2+, and the Adduct CH3CN · SbF5. The Crystal and Molecular Structures of [M(NCCH3)4][SbF6]2 · CH3CN, M = Pd or Pt Solvolyses of the homoleptic metal carbonyl salts [M(CO)4][Sb2F11]2, M = Pd or Pt, in acetonitrile leads at 50 °C both to complete ligand exchange for the cations as well as to a conversion of the di-octahedral anion [Sb2F11] into [SbF6] and the molecular adduct CH3CN · SbF5 according to: [M(CO)4][Sb2F11]2 + 7 CH3CN → [M(NCCH3)4][SbF6]2 · CH3CN + 2 CH3CN · SbF5 + 4 CO M = Pd, Pt The monosolvated [M(NCCH3)4][SbF6]2 · CH3CN are obtained as single crystals from solution and are structurally characterized by single crystal x-ray diffraction. Both salts are isostructural. The cations are square planar but the N–C–C-sceletial groups of the ligands depart slightly from linearity. The new acetonitrile complexes as well as [Au(NCCH3)2][SbF6] and the adduct CH3CN · SbF5 are completely characterized by vibrational spectroscopy.  相似文献   

15.
We have studied the effect of small additives of Pt on the methane sensitivity of semiconductor adsorption sensors based on SnO2 (doped with Sb2O5) and on the catalytic activity of sensor materials of the same composition in oxidation of methane. We have shown that as the amount of Pt increases, the catalytic activity increases and the sensitivity of the sensors passes through a maximum. The results obtained are explained taking into account the spillover phenomenon.__________Translated from Teoreticheskaya i Eksperimental’naya Khimiya, Vol. 41, No. 3, pp. 176–179, May–June, 2005.  相似文献   

16.
Supported Pt and Pd are most commonly used for oxidation catalysts. They have similar and different characteristics for deactivation factors. The catalytic activity of Pt and Pd catalysts supported on ??-Al2O3 was studied in the presence and absence of H2O and SO2 during CO oxidation under simulated conditions of diesel exhaust gas. Without the addition of H2O and SO2 to the feed gas, Pd/Al2O3 had a superior catalytic activity compared to Pt/Al2O3. The addition of H2O to the feed gas strongly and negligibly affected the activity of Pd and Pt, respectively, while the addition of SO2 to the feed gas had a strong poisoning effect on the catalytic activity of both Pt and Pd catalysts. Although being the most active, Pd catalysts exhibited a strong sensitivity to water and sulfur-containing compounds. Fe was added to the Pt and Pd catalysts to introduce sulfur resistance. The addition of Fe enhanced the activity of the catalysts by suppressing the phase transition of Al2O3 to Al2(SO4)3 and by hindering metal sintering.  相似文献   

17.
Nanocrystalline tin dioxide modified by Pd and Pt clusters or by bimetallic PdPt nanoparticles was synthesized. Distribution of the modifers on the SnO2 surface was studied by high-resolution transmission electron microscopy and energy dispersive X-ray microanalysis with element distribution mapping. It was shown that the Pd/Pt ratio in bimetallic particles varies over a broad range and does not depend on the particle diameter. The effect of platinum metals on the reducibility of nanocrystalline SnO2 by hydrogen was determined. The sensing properties of the resulting materials towards 6.7 ppm CO in air were estimated in situ by electrical conductivity measurements. The sensor response of SnO2 modified with bimetallic PdPt particles was a superposition of the signals of samples with Pt and Pd clusters.  相似文献   

18.
The CH4 chlorination over Y zeolites was investigated to produce CH3Cl in a high yield. Three different catalytic systems based on Y zeolite were tested for enhancement of CH4 conversion and CH3Cl selectivity: (i) HY zeolites in H+-form having various Si/Al ratios, (ii) Pt/HY zeolites supporting Pt metal nanoparticles, (iii) Pt/NaY zeolites in Na+-form supporting Pt metal nanoparticles. The reaction was carried out using the gas mixture of CH4 and Cl2 with the respective flow rates of 15 and 10 mL min−1 at 300–350 °C using a fixed-bed reactor under a continuous gas flow condition (gas hourly space velocity = 3000 mL g−1 h−1). Above the reaction temperature of 300 °C, the CH4 chlorination is spontaneous even in the absence of catalyst, achieving 23.6% of CH4 conversion with 73.4% of CH3Cl selectivity. Under sufficient supplement of thermal energy, Cl2 molecules can be dissociated to two chlorine radicals, which triggered the C-H bond activation of CH4 molecule and thereby various chlorinated methane products (i.e., CH3Cl, CH2Cl2, CHCl3, CCl4) could be produced. When the catalysts were used under the same reaction condition, enhancement in the CH4 conversion was observed. The Pt-free HY zeolite series with varied Si/Al ratios gave around 27% of CH4 conversion, but there was a slight decrease in CH3Cl selectivity with about 64%. Despite the difference in acidity of HY zeolites having different Si/Al ratios, no prominent effect of the Si/Al ratios on the catalytic performance was observed. This suggests that the catalytic contribution of HY zeolites under the present reaction condition is not strong enough to overcome the spontaneous CH4 chlorination. When the Pt/HY zeolite catalysts were used, the CH4 conversion reached further up to 30% but the CH3Cl selectivity decreased to 60%. Such an enhancement of CH4 conversion could be attributed to the strong catalytic activity of HY and Pt/HY zeolite catalysts. However, both catalysts induced the radical cleavage of Cl2 more favorably, which ultimately decreased the CH3Cl selectivity. Such trade-off relationship between CH4 conversion and CH3Cl selectivity can be slightly broken by using Pt/NaY zeolite catalyst that is known to possess Frustrated Lewis Pairs (FLP) that are very useful for ionic cleavage of H2 to H+ and H. Similarly, in the present work, Pt/NaY(FLP) catalysts enhanced the CH4 conversion while keeping the CH3Cl selectivity as compared to the Pt/HY zeolite catalysts.  相似文献   

19.
Being abundant and active,Fe_2O_3 is suitable for selective oxidation of H_2S.However,its practical application is limited due to the poor sulfur selectivity and rapid deactivation.Herein,we report a facile template-free hydrothermal method to fabricate porous α-Fe_2O_3/SnO_2 composites with hierarchical nanoflower that can obviously improve the catalytic performance of Fe_2O_3.It was disclosed that the synergistic effect between α-Fe_2O_3 and SnO_2 promotes the physico-chemical properties of α-Fe_2O_3/SnO_2 composites.Specifically,the electron transfer between the Fe~(2+)/Fe~(3+) and Sn~(2+)/Sn~(4+) redox couples enhances the reducibility of α-Fe_2O_3/SnO_2 composites.The number of oxygen vacancies is improved when the Fe cations incorporate into SnO_2 structure,which facilitates the adsorption and activation of oxygen species.Additionally,the porous structure improves the accessibility of H_2 S to active sites.Among the composites,Fe1 Sn1 exhibits complete H_2 S conversion with 100% sulfur selectivity at 220℃,better than those of pure α-Fe_2O_3 and SnO_2.Moreover,Fe1 Sn1 catalyst shows high stability and water resistance.  相似文献   

20.
The reduction of H2SO4 to SO2 occurs with a relatively good efficiency only at high temperatures, in the presence of catalysts. Some experimental results, regarding conversion of sulfuric acid (96 wt.%) to sulfur dioxide and oxygen, are reported. The reduction has been performed at 800 ?C 900°C and atmospheric pressure, in a tubular quartz reactor. The following commercial catalysts were tested: Pd/Al2O3 (5 wt.% and 0.5 wt.% Pd), Pt/Al2O3 (0.1 wt.% Pt) and ??-Fe2O3. The fresh and spent catalysts were characterized by X-Ray diffraction and BET method. The highest catalytic activity was determined for 5 wt.% Pd/Al2O3, a conversion of 80% being obtained for 5 hours time on stream, at 9 mL h?1 flow rate of 96 wt.% H2SO4. A conversion of 64% was determined for 0.5 wt.% Pd/Al2O3 and 0.1 wt.% Pt/Al2O3. For ??-Fe2O3, a less expensive catalyst, a conversion of 61% for about 60 hours was obtained.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号