共查询到18条相似文献,搜索用时 62 毫秒
1.
潜变量模型是一种广泛应用于表征多个观察变量之间相关性的统计方法.在刻画多重分类数据关联性方面,这类模型通常假定每个分类变量都与一个潜在连续变量或向量相联系,通过潜变量或向量在窗口部分的观察值来确定分类变量的值,从而达到对类别界定.然而该方法存在一个弱点:观察似然或模型存在确定性问题.模型缺乏识别性必然会对估计构成影响.... 相似文献
2.
利用一些辅助信息作为工具变量并结合光滑门限估计方程(SEE)方法,针对协变量含有测量误差广义线性模型提出一个工具变量类型的变量选择方法.该方法可以在估计模型中非零回归系数的同时,剔除模型中不显著的协变量,从而达到变量选择的目的.另外,该变量选择过程不需要求解任何凸优化问题,从而具有较强的适应性并且在实际应用比较容易计算.理论证明该变量选择方法是相合的,并且对非零回归系数的估计达到了最优的参数收敛速度.数值模拟结果表明所提出的变量选择方法可以有效地消除测量误差对估计精度的影响,并且具有较好的有限样本性质. 相似文献
3.
该文主要研究带有误差变量的自回归模型的自回归函数的非参数估计问题,应用卷积核函数,给出了自回归函数的局部多项式估计,考察了局部多项式估计的相合性和渐近正态性,最后作了模拟计算. 相似文献
4.
5.
6.
7.
本文将研究贝叶斯法则视角下的空间自相关误差自相关模型(Spatial Autoregressive Model with Autoregressive Disturbances,SARAR模型)变量选择问题。通过将基于BIC准则的子集选择法推广到空间模型,实现SARAR模型的变量选择,并证明在一定条件下,对于SARAR模型的变量选择BIC准则具有良好的渐近性质。同时本文还将利用Monte Carlo模拟验证BIC准则能够很好的实现SARAR模型的变量选择。最后以股票收益率为例,在验证股票收益率具有空间效应的前提下,利用BIC准则对影响股票收益率的众多财务指标进行变量选择。 相似文献
8.
10.
在使用变量选择方法选出模型后,如何评价模型中变量系数的显著性是统计学重点关注的前沿问题之一.文章从适应性Lasso变量选择方法的选择结果出发,在考虑实践中误差分布多样性的前提下,基于选择事件构造了模型保留变量系数的条件检验统计量,并给出了该统计量的一致收敛性质的证明过程.模拟研究显示,在多种误差分布下所提方法均可进一步优化变量选择结果,有较强的实用价值.应用此方法对CEPS学生数据进行了实证分析,最终选取了学生认知能力等10个变量作为影响中学生成绩的主要因素,为相关研究提供了有益的参考. 相似文献
11.
Lasso是机器学习中比较常用的一种变量选择方法,适用于具有稀疏性的回归问题.当样本量巨大或者海量的数据存储在不同的机器上时,分布式计算是减少计算时间提高效率的重要方式之一.本文在给出Lasso模型等价优化模型的基础上,将ADMM算法应用到此优化变量可分离的模型中,构造了一种适用于Lasso变量选择的分布式算法,证明了... 相似文献
12.
调节变量(moderator)辨析:类型、表述和识别 总被引:2,自引:0,他引:2
本文扼要阐述了调节变量在社会科学研究中的重要意义,对调节变量的分类、表述、识别检验方法进行了归纳和讨论,并就研究中应注意的有关问题进行了总结. 相似文献
13.
多数基于线性混合效应模型的变量选择方法分阶段对固定效应和随机效应进行选择,方法繁琐、易产生模型偏差,且大部分非参数和半参数的线性混合效应模型只涉及非参数部分的光滑度或者固定效应的选择,并未涉及非参变量或随机效应的选择。本文用B样条函数逼近非参数函数部分,从而把半参数线性混合效应模型转化为带逼近误差的线性混合效应模型。对随机效应的协方差矩阵采用改进的乔里斯基分解并重新参数化线性混合效应模型,接着对该模型的极大似然函数施加集群ALASSO惩罚和ALASSO惩罚两类惩罚,该法能实现非参数变量、固定效应和随机效应的联合变量选择,基于该法得出的估计量也满足相合性、稀疏性和Oracle性质。文章最后做了个数值模拟,模拟结果表明,本文提出的估计方法在变量选择的准确性、参数估计的精度两个方面均表现较好。 相似文献
14.
主要研究因变量存在缺失且协变量部分包含测量误差情形下,如何对变系数部分线性模型同时进行参数估计和变量选择.我们利用插补方法来处理缺失数据,并结合修正的profile最小二乘估计和SCAD惩罚对参数进行估计和变量选择.并且证明所得的估计具有渐近正态性和Oracle性质.通过数值模拟进一步研究所得估计的有限样本性质. 相似文献
15.
变量选择在回归分析建模中是一个非常重要的基本问题,在回归模型中应该保留对响应的影响最显著的变量。变量选择在分析实际经济问题中得到广泛的应用。本文以混料模型为基础,主要研究混料模型中的变量选择问题。 相似文献
16.
混合时空地理加权回归模型作为一种有效处理空间数据全局平稳和局部非平稳的分析方法得到了广泛的应用.但其参数估计方法中假定固定系数变量已知且不存在时空效应,这一较强的前提使回归系数的估计值变得极不稳定.为探究当固定系数变量存在时空效应时的参数估计方法,本文提出一种变量选择(Variable Selection)方法来剔除指标间的交互效应,并给出相应的算法过程.通过乌鲁木齐市商品住宅真实价格数据对不同估计方法进行对比验证,结果表明,利用变量选择方法后得到的MGTWR模型性能和拟合效果得到提升,固定回归系数的估计更加稳定,原有参数估计方法得到改善. 相似文献
17.
Kenichi Satoh Mika Kobayashi Yasunori Fujikoshi 《Journal of multivariate analysis》1997,60(2):277-292
In this paper we consider the problem of selecting the covariables within individuals in the growth curve model. We propose two modifications ofAICandMIC(Cp-static), which have improvements on the bias properties. Asymptotic distributions of variable slection criteria are derived under a general situation where a polynomial growth curve of degreej0is approximately suitable. A simulation study is also given to gain some understanding on the small sample properties of these variable selection criteria 相似文献
18.
一种基于变权的人才选优决策模型 总被引:5,自引:0,他引:5
根据全面型人才和专长型人才的特点,利用惩罚型状态变权向量和激励型状态变权向量完成因素之间权重的转移,进而实现因素之间的均衡或突出某些因素的作用,由此建立了一个人才选优的综合决策模型. 相似文献