首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
翟良君  郑雨军  丁世良 《中国物理 B》2012,21(7):70503-070503
In this paper, the dynamics of chaos and the entanglement in triatomic molecular vibrations are investigated. On the classical aspect, we study the chaotic trajectories in the phase space. We employ the linear entropy to examine the dynamical entanglement of the two bonds on the quantum aspect. The correspondence between the classical chaos and the quantum dynamical entanglement is also investigated. As an example, we apply our algebraic model to molecule H2O.  相似文献   

2.
We study the entanglement property in matrix product spin-ring systems systemically by von Neumann entropy. We find that: (i) the Hilbert space dimension of one spin determines the upper limit of the maximal value of the entanglement entropy of one spin, while for multiparticle entanglement entropy, the upper limit of the maximal value depends on the dimension of the representation matrices. Based on the theory, we can realize the maximum of the entanglement entropy of any spin block by choosing the appropriate control parameter values. (ii) When the entanglement entropy of one spin takes its maximal value, the entanglement entropy of an asymptotically large spin block, i.e. the renormalization group fixed point, is not likely to take its maximal value, and so only the entanglement entropy Sn of a spin block that varies with size n can fully characterize the spin-ring entanglement feature. Finally, we give the entanglement dynamics, i.e. the Hamiltonian of the matrix product system.  相似文献   

3.
The dynamical properties of quantum entanglement in the integrable Jaynes-Cummings model with a Kerr nonlinearity are studied in terms of the reduced-density linear entropy with various Kerr coupling parameters and initial states, where the initial states are prepared by the coherent states placed in the corresponding phase space described in terms of canonical variables. The mean entanglement averaged over time is employed to investigate the behavior of entanglement of those coherent states. It is shown that the mean entanglement of the coherent states put near the centers of periodic orbits, both with a strong Kerr coupling and without a Kerr coupling, tends to be the minimal, and that the mean entanglement of the coherent states centered near the boundary with a strong Kerr coupling is the minimal while that without Kerr coupling is the maximal.  相似文献   

4.
The relation between the excitonic purity and the concurrence in a system of two coupled large semiconduction quantum dots mediated by a single-mode cavity field is investigated by using linear entropy theory. The results show the difference in describing two modes of excitonic entanglement between linear entropy and concurrence. The relation between nonclassical property of cavity field and the entanglement degree of excitons is also discussed. The results show that two modes of exciton can reach maximal entanglement when the cavity exhibits an antibunching effect.  相似文献   

5.
Quantum entanglement of two stretches in molecule H2S is investigated for various initial states in terms of the reduced-density yon Neumann entropy and the mean entropy defined by average over time. It is shown that the maximal and the mean entropies of an initial state with local-mode character are smaller than those with normal-mode character, and the mean entropy displays a maximum near the position of the normal-to-local transition.  相似文献   

6.
We propose a holographic correspondence of the flat spacetime based on the behavior of the entanglement entropy and the correlation functions. The holographic dual theory turns out to be highly nonlocal. We argue that after most part of the space is traced out, the reduced density matrix gives the maximal entropy and the correlation functions become trivial. We present a toy model for this holographic dual using a nonlocal scalar field theory that reproduces the same property of the entanglement entropy. Our conjecture is consistent with the entropy of Schwarzschild black holes in asymptotically flat spacetimes.  相似文献   

7.
The fluctuation and relative fluctuation of entanglement entropy of a bipartite system for Dirac fields in noninertial frames are investigated. It is shown that the fluctuation and relative fluctuation of entanglement entropy are observer-dependent, which depend on their observed frames. It is found that both the fluctuation and relative fluctuation of entanglement entropy become more noticeable with the increasing of the subsystem's acceleration. We also find that the entanglement entropy always has fluctuation regardless of the initial state parameter and for any magnitude of the acceleration. We argue that the statistical mean for the measurement of entanglement entropy relates to the accelerated motion of the observer.  相似文献   

8.
The fluctuation and relative fluctuation of entanglement entropy of a bipartite system for Dirac fields in noninertial frames are investigated. It is shown that the fluctuation and relative fluctuation of entanglement entropy are observer-dependent, which depend on their observed frames. It is found that both the fluctuation and relative fluctuation of entanglement entropy become more noticeable with the increasing of the subsystem's acceleration. We also find that the entanglement entropy always has fluctuation regardless of the initial state parameter and for any magnitude of the acceleration. We argue that the statistical mean for the measurement of entanglement entropy relates to the accelerated motion of the observer.  相似文献   

9.
Kai-Qian Huang 《中国物理 B》2022,31(9):90301-090301
We investigate the quantum entanglement in a non-Hermitian kicking system. In the Hermitian case, the out-of-time ordered correlators (OTOCs) exhibit the unbounded power-law increase with time. Correspondingly, the linear entropy, which is a common measurement of entanglement, rapidly increases from zero to almost unity, indicating the formation of quantum entanglement. For strong enough non-Hermitian driving, both the OTOCs and linear entropy rapidly saturate as time evolves. Interestingly, with the increase of non-Hermitian kicking strength, the long-time averaged value of both OTOCs and linear entropy has the same transition point where they exhibit the sharp decrease from a plateau, demonstrating the disentanglment. We reveal the mechanism of disentanglement with the extension of Floquet theory to non-Hermitian systems.  相似文献   

10.
M. Lombardi  A. Matzkin 《Laser Physics》2010,20(5):1215-1220
The relationship between classically chaotic dynamics and the entanglement properties of the corresponding quantum system is examined in the semiclassical limit. Numerical results are computed for a modified kicked top, keeping the classical dynamics constant while investigating the entanglement for several versions of the corresponding quantum system characterized by a different value of the effective Planck constant eff. Our findings indicate that as eff → 0, the apparent signatures of classical chaos in the entanglement properties, such as characteristic oscillations in the time-dependence of the linear entropy, can also be obtained in the regular regime. These results suggest that entanglement is not a universal marker of chaotic dynamics of the corresponding classical system.  相似文献   

11.
We show that the bipartite entanglement in the two-mode quantum kicked top can reveal the underlying chaotic and regular structures in phase space: namely, the entanglement displays a rapid rise after a very short time for an initial spin coherent state centred in a chaotic region of the phase space, whereas the entanglement displays a periodic modulation for the coherent state centred at an elliptic fixed point. The quantum-classical correspondence is investigated by studying the mean and maximal linear entropy.  相似文献   

12.
An entanglement measure for multipartite pure states is formulated using the product of the von Neumann entropy of the reduced density matrices of the constituents. Based on this new measure, all possible ways of the maximal entanglement of the triqubit pure states are studied in detail and all types of the maximal entanglement have been compared with the result of ‘the average entropy’. The new measure can be used to calculate the degree of entanglement, and an improvement is given in the area near the zero entropy.  相似文献   

13.
研究了在对称双势阱玻色-爱因斯坦凝聚体系粒子间相互作用项上外加周期调制而引起的系统动力学相变,特别地研究了该系统通向混沌的相变过程.发现在一定驱动参数下,当外加调制频率与系统固有频率达到共振时,相平面会出现不稳定性现象,即混沌.在混沌区域,粒子在各量子态随机分布,平均布居数差在零附近波动.特别地,研究表明,混沌现象的出现可以用量子纠缠熵来表征,混沌现象出现时,两种平均纠缠熵都趋于它们的最大值. 关键词: 玻色-爱因斯坦凝聚 双势阱 混沌 纠缠熵  相似文献   

14.
Quantum chaos is a subject whose major goal is to identify and to investigate different quantum signatures of classical chaos. Here we study entanglement production in coupled chaotic systems as a possible quantum indicator of classical chaos. We use coupled kicked tops as a model for our extensive numerical studies. We find that, in general, chaos in the system produces more entanglement. However, coupling strength between two subsystems is also a very important parameter for entanglement production. Here we show how chaos can lead to large entanglement which is universal and describable by random matrix theory (RMT). We also explain entanglement production in coupled strongly chaotic systems by deriving a formula based on RMT. This formula is valid for arbitrary coupling strengths, as well as for sufficiently long time. Here we investigate also the effect of chaos on the entanglement production for the mixed initial state. We find that many properties of the mixed-state entanglement production are qualitatively similar to the pure state entanglement production. We however still lack an analytical understanding of the mixed-state entanglement production in chaotic systems.  相似文献   

15.
研究了在对称双势阱玻色-爱因斯坦凝聚体系粒子间相互作用项上外加周期调制而引起的系统动力学相变,特别地研究了该系统通向混沌的相变过程.发现在一定驱动参数下,当外加调制频率与系统固有频率达到共振时,相平面会出现不稳定性现象,即混沌.在混沌区域,粒子在各量子态随机分布,平均布居数差在零附近波动.特别地,研究表明,混沌现象的出现可以用量子纠缠熵来表征,混沌现象出现时,两种平均纠缠熵都趋于它们的最大值.  相似文献   

16.
Entanglement is one of the most important concepts in quantum physics. We review recent progress in understanding the quantum entanglement in many-body systems using large-N solvable models: the Sachdev–Ye–Kitaev (SYK) model and its generalizations. We present the study of entanglement entropy in the original SYK model using three different approaches: the exact diagonalization, the eigenstate thermalization hypothesis, and the pathintegral representation. For coupled SYK models, the entanglement entropy shows linear growth and saturation at the thermal value. The saturation is related to replica wormholes in gravity. Finally, we consider the steady-state entanglement entropy of quantum many-body systems under repeated measurements. The traditional symmetry breaking in the enlarged replica space leads to the measurement-induced entanglement phase transition.  相似文献   

17.
We study two-component Bose-Einstein condensates that behave collectively as a spin system obeying the dynamics of a quantum kicked top. Depending on the nonlinear interaction between atoms in the classical limit, the kicked top exhibits both regular and chaotic dynamical behavior. The quantum entanglement is physically meaningful if the system is viewed as a bipartite system, where the subsystem is any one of the two modes. The dynamics of the entanglement between the two modes in this classical chaotic system has been investigated. The chaos leads to rapid rise and saturation of the quantum entanglement. Furthermore, the saturated values of the entanglement fall short of its maximum. The mean entanglement has been used to clearly display the close relation between quantum entanglement and underlying chaos.  相似文献   

18.
邹艳 《中国物理 B》2010,19(7):74207-074207
We examine the single-atom entropy squeezing and the atom-field entanglement in a system of two moving twolevel atoms interacting with a single-mode coherent field in a lossless resonant cavity.Our numerical calculations indicate that the squeezing period,the squeezing time and the maximal squeezing can be controlled by appropriately choosing the atomic motion and the field-mode structure.The atomic motion leads to a periodical time evolution of entanglement between the two-atom and the field.Moreover,there exists corresponding relation between the time evolution properties of the atomic entropy squeezing and that of the entanglement between the two atoms and the field.  相似文献   

19.
We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using tensor-network states(TNS). The ground-state wave function is represented as a linear superposition composed from a set of TNS generated by Lanczos iteration. This method improves significantly the accuracy of the tensor-network algorithm and provides an effective way to enlarge the maximal bond dimension of TNS. The ground state such obtained contains significantly more entanglement than each individual TNS, reproducing correctly the logarithmic size dependence of the entanglement entropy in a critical system. The method can be generalized to non-Hamiltonian systems and to the calculation of low-lying excited states, dynamical correlation functions, and other physical properties of strongly correlated systems.  相似文献   

20.
吴琴  方卯发  胡要花 《中国物理》2007,16(7):1971-1975
We have investigated the evolution of the atomic quantum entropy and the entanglement of atom-photon in the system with competing k-photon and l-photon transitions by means of fully quantum theory, and examined the effects of competing photon numbers (k and l), the relative coupling strength between the atom and the two-mode field (A/g), and the initial photon number of the field on the atomic quantum entropy and the entanglement of atom-photon. The results show that the multiphoton competing transitions or the large relative coupling strength can lead to the strong entanglement between atoms and photons. The maximal atom-photon entanglement can be prepared via the appropriate selection of system parameters and interaction time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号