首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
本文使用Triton X-100作为模板剂制备半导体硫化银纳米颗粒,并研究了其吸收光谱的兰移特性。在金属铝或金基底上自组装有机双功能分子单层膜后,将其浸入所制备的纳米硫化银颗粒的微乳液中,自组装得到硫化银纳米颗粒单层膜并研究了其表面形貌特征。  相似文献   

2.
A simple but effective aqueous-organic phase-transfer method for gold, silver, and platinum nanoparticles was developed on the basis of the decrease of the PVP's solubility in water with the temperature increase. The present method is superior in the transfer efficiency of highly stable nanoparticles to the common phase-transfer methods. The gold, silver, and platinum nanoparticles transferred to the 1-butanol phase dispersed well, especially silver and platinum particles almost kept the previous particle size. Electrochemical synthesis of gold nanoparticles in an oil-water system was achieved by controlling the reaction temperature at 80 degrees C, which provides great conveniences for collecting metal particles at the oil/water interface and especially for fabricating dense metal nanoparticle films. A technique to fabricate gold nanofilms on solid supports was also established. The shapes and sizes of gold nanoparticles as the building blocks may be controllable through changing reaction conditions.  相似文献   

3.
We report on the use of Neem (Azadirachta indica) leaf broth in the extracellular synthesis of pure metallic silver and gold nanoparticles and bimetallic Au/Ag nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with Neem leaf extract, the rapid formation of stable silver and gold nanoparticles at high concentrations is observed to occur. The silver and gold nanoparticles are polydisperse, with a large percentage of gold particles exhibiting an interesting flat, platelike morphology. Competitive reduction of Au3+ and Ag+ ions present simultaneously in solution during exposure to Neem leaf extract leads to the synthesis of bimetallic Au core-Ag shell nanoparticles in solution. Transmission electron microscopy revealed that the silver nanoparticles are adsorbed onto the gold nanoparticles, forming a core-shell structure. The rates of reduction of the metal ions by Neem leaf extract are much faster than those observed by us in our earlier studies using microorganisms such as fungi, highlighting the possibility that nanoparticle biological synthesis methodologies will achieve rates of synthesis comparable to those of chemical methods.  相似文献   

4.
A simple and convenient one step room temperature method is described for the synthesis of bovine serum albumin (BSA) capped gold and silver nanoparticles. BSA reduces silver ions to silver nanoparticles but does not directly reduce gold ions to gold nanoparticles at room temperature and varying pH conditions. However, when silver and gold ions are simultaneously added to BSA, silver ions get reduced to metallic silver first and these in turn reduce gold ions to gold nanoparticles through a galvanic exchange reaction. The so synthesized silver and gold nanoparticles are easily water dispersible and can withstand addition of salt even at high concentrations. It is shown that the capped protein retains its secondary structure and the helicity to a large extent on the nanoparticles surface and that the protein capping makes the nanoparticles cytocompatible.  相似文献   

5.
We report on the size dependence of the melting temperature of silica-encapsulated gold nanoparticles. The melting point was determined using differential thermal analysis (DTA) coupled to thermal gravimetric analysis (TGA) techniques. The small gold particles, with sizes ranging from 1.5 to 20 nm, were synthesized using radiolytic and chemical reduction procedures and then coated with porous silica shells to isolate the particles from one another. The resulting silica-encapsulated gold particles show clear melting endotherms in the DTA scan with no accompanying weight loss of the material in the TGA examination. The silica shell acts as a nanocrucible for the melting gold with little effect on the melting temperature itself, even though the analytical procedure destroys the particles once they melt. Phenomenological thermodynamic predictions of the size dependence of the melting point of gold agree with the experimental observation. Implications of these observations to the self-diffusion coefficient of gold in the nanoparticles are discussed, especially as they relate to the spontaneous alloying of core-shell bimetallic particles.  相似文献   

6.
The transmetalation reaction between a sacrificial nanoparticle and more noble metal ions in solution has emerged as a novel method for creating unique hollow and bimetallic nanostructures. In this report, we investigate the possibility of carrying out the transmetalation reaction between hydrophobic silver nanoparticles assembled and constrained at the air-water interface and subphase gold ions. We observe that facile reduction of the subphase gold ions by the sacrificial silver nanoparticles occurs resulting in the formation of elongated gold nanostructures that appear to cross-link the sacrificial silver particles. This transmetalation reaction may be modulated by the insertion of an electrostatic barrier in the form of an ionizable lipid monolayer between the silver nanoparticles and the aqueous gold ions that impacts the gold nanoparticle assembly. Transmetalation reactions between nanoparticles constrained into a close-packed structure and appropriate metal ions could lead to a new strategy for metallic cross-linking of nanoparticles and generation of coatings with promising optoelectonic behavior.  相似文献   

7.
In this article the effect of field strength, temperature and square-wave pulse on the deposition structure of gold nanoparticles is investigated and 2D structures of silver and two kinds of rare-earth carbonate particles are synthesized by electrophoretic deposition (EPD). The results indicate that EPD is a general phenomenon that occurs on the electrode/sol interface and that the EPD method may be developed for the assembling of 2D structures of nanoparticles. On the other hand, the results also show that the composition and surface condition as well as the size distribution of the particles can affect the order of the particles in the monolayer. Received: 7 October 1999/Accepted: 25 January 2000  相似文献   

8.
Hydrosols of spindle-shaped composite particles with the core of iron(III) oxyhydroxide and silver shell are synthesized by enlarging metal seeding nanoparticles adsorbed on the surface of the cores in the solution containing silver nitrate and mild reducing agent. It is revealed that the character of the growth of shells on gold seeding particles greatly depends on the type of reducing agent. When using ascorbic acid, seeding particles grow primarily in the direction normal to the core surface due to the blocking of some of the particle faces by ions present in the solution. As a result, the forming shell is characterized by a fairly nonuniform structure. At the same time, when using formaldehyde, the growth of seeding nanoparticles proceeds predominantly in the lateral direction to form first an island-like film, then a continuous thin metal shell on the core surface. It is demonstrated that the position of localized surface plasmon resonance of such structure can be fine tuned to the preset wavelength by controlled variations in the thickness of Ag shell with very small step (up to 1 nm).  相似文献   

9.
Cao YC  Jin R  Thaxton CS  Mirkin CA 《Talanta》2005,67(3):449-455
Herein, we describe the detailed synthesis of Ag/Au core-shell nanoparticles, the surface-functionalization of these particles with thiolated oligonucleotides, and their subsequent use as probes for DNA detection. The Ag/Au core-shell nanoparticles retain the optical properties of the silver core and are easily functionalized with thiolated oligonucleotides due to the presence of the gold shell. As such, the Ag/Au core-shell nanoparticles have optical properties different from their pure gold counterparts and provide another “color” option for target DNA-directed colorimetric detection. Size-matched Ag/Au core-shell and pure gold nanoparticles perform nearly identically in DNA detection and melting experiments, but with distinct optical signatures. Based on this observation, we report the development of a two-color-change method for the detection and simultaneous validation of single-nucleotide polymorphisms in a DNA target using Ag/Au core-shell and pure gold nanoparticle probes.  相似文献   

10.
Electrostatic-assembly metallized nanoparticles network by DNA template   总被引:1,自引:0,他引:1  
Wu A  Cheng W  Li Z  Jiang J  Wang E 《Talanta》2006,68(3):693-699
Eighteen-nanometer gold and 3.5-nm silver colloidal particles closely packed by cetyltrimethylammonium bromide (CTAB) to form its positively charged shell. The DNA network was formed on a mica substrate firstly. Later, CTAB-capped gold or silver colloidal solutions were cast onto DNA network surface. It was found that the gold or silver nanoparticles metallized networks were formed owing to the electrostatic-driven template assembling of positive charge of CTAB-capped gold and silver particles on the negatively charged phosphate groups of DNA molecules by the characterizations of AFM, XPS and UV-vis. This method may provide a novel and simple way to studying nanoparticles assembly conjugating DNA molecules and offer some potential promising applications in nanocatalysis, nanoelectronics, and nanosensor on the basis of the fabricated metal nanoparticles network.  相似文献   

11.
A simple, one-step approach for the synthesis of micro- and nanoparticles of silver by employing a lyotropic liquid crystal (LLC) template is described. Anisotropic silver particles are synthesised by reducing an appropriate amount of precursor silver nitrate using a mild reducing agent ascorbic acid in presence of a hexagonal LLC medium, without the aid of any external stabilising agents. In this synthesis, precursor concentration, type of the reducing agent and LLC phase are found to significantly influence the particle size and morphology. Either a decrease in the concentration of silver nitrate or a change in the reducing agent, from ascorbic acid to sodium borohydride in the same reaction medium, yielded quasi-spherical nanoparticles. Besides, replacing the hexagonal LLC medium with a lamellar phase during the synthesis using ascorbic acid also resulted in the formation of spherical particles in nanometre scale. As a comparison, gold nanoparticle synthesis is carried out in hexagonal and lamellar LLC phases. Similar to the observations made in the silver particle synthesis, branched anisotropic particles are formed in the hexagonal phase and quasi-spherical particles are produced in the lamellar phase. A possible growth mechanism for the formation of these particles based on the phase structure of the LLC medium is discussed.  相似文献   

12.
Au/Ag核一壳结构复合纳米粒子形成机制的研究   总被引:13,自引:0,他引:13  
纪小会  王连英  袁航  马岚  白玉白  李铁津 《化学学报》2003,61(10):1556-1560
在已制备好的Au纳米粒子表面,通过化学还原的方法沉积生长Ag包覆层,通过 控制Au, Ag的比列,制备了粒度均匀且粒径可控的Au/Ag核-壳结构纳米粒子。利用 UV-vis吸收光谱和透射电子显微镜(TEM)对SAu, Ag摩尔比为1:10的复合纳米粒 子的光学性质和形态进行随时监测,直接观察了核-壳结构纳米粒子的生长过程: 一部分Ag+在Au核表面还原生长,溶液中其余Ag+还原形成银的纳米团簇向粒子表面 的继续沉积生长,壳层增厚。  相似文献   

13.
A reverse microemulsion method is reported for preparing monodispersed silica-coated gold (or silver) nanoparticles without the use of a silane coupling agent or polymer as the surface primer. This method enables a fine control of the silica shell thickness with nanometer precision. As compared to the St?ber method reported for direct silica coating, which can only coat large gold particles ( approximately 50 nm in diameter) at low concentrations (<1.5 x 10(10) particles/mL), this new approach is capable of coating gold particles of a wide range of sizes (from 10 to 50 nm) at a much higher concentration ( approximately 1.5 x 10(13) particles/mL). Moreover, it enables straightforward surface functionalization via co-condensation between tetraethyl orthosilicate and another silane with the desired functional groups. The functional groups introduced by this method are readily accessible and thus useful for various applications.  相似文献   

14.
This paper presents an environmentally friendly, inexpensive, rapid, and efficient process for size-selective fractionation of polydisperse metal nanoparticle dispersions into multiple narrow size populations. The dispersibility of ligand-stabilized silver and gold nanoparticles is controlled by altering the ligand tails-solvent interaction (solvation) by the addition of carbon dioxide (CO2) gas as an antisolvent, thereby tailoring the bulk solvent strength. This is accomplished by adjusting the CO2 pressure over the liquid, resulting in a simple means to tune the nanoparticle precipitation by size. This study also details the influence of various factors on the size-separation process, such as the types of metal, ligand, and solvent, as well as the use of recursive fractionation and the time allowed for settling during each fractionation step. The pressure range required for the precipitation process is the same for both the silver and gold particles capped with dodecanethiol ligands. A change in ligand or solvent length has an effect on the interaction between the solvent and the ligand tails and therefore the pressure range required for precipitation. Stronger interactions between solvent and ligand tails require greater CO2 pressure to precipitate the particles. Temperature is another variable that impacts the dispersibility of the nanoparticles through changes in the density and the mole fraction of CO2 in the gas-expanded liquids. Recursive fractionation for a given system within a particular pressure range (solvent strength) further reduces the polydispersity of the fraction obtained within that pressure range. Specifically, this work utilizes the highly tunable solvent properties of organic/CO2 solvent mixtures to selectively size-separate dispersions of polydisperse nanoparticles (2 to 12 nm) into more monodisperse fractions (+/-2 nm). In addition to providing efficient separation of the particles, this process also allows all of the solvent and antisolvent to be recovered, thereby rendering it a green solvent process.  相似文献   

15.
Approaches for the controlled formation of gold nanoparticle dimers are investigated. These are based on a locally confined surface modification of gold nanoparticles followed by bridging two particles with an organic linker. A key factor in these approaches is the use of multivalent ligands. Citrate-stabilized gold nanoparticles are immobilized on a glass surface and mono- and multivalent thiol ligands are investigated regarding their ability to inactivate the nanoparticles sites facing away from the glass. A successful locally confined functionalization is only possible if multivalent ligands are used in this step. The application of monovalent ligands results in less stable particles without a permanent regioselective functionalization. This result can be explained by the dynamic equilibrium between bound and free ligands. Subsequently, the sites of the nanoparticles previously bound to the glass surface are functionalized with thiol ligands additionally bearing a reactive group. Approaches using dithiol linkers, diamine linkers, and coupling complementary functionalized particles are investigated. The highest yield of stable dimers is obtained from conditions where nanoparticles which are regioselectively functionalized with an N-hydroxysuccinimide ester are reacted with complementary amino-functionalized particles. The application of nanoparticles with activated carboxyl groups is essential since standard carboxyl activation agents induce an aggregation of the nanoparticles due to a reaction with remaining citrate molecules on the nanoparticle surface which reduces significantly electrostatic stabilization. This versatile approach using complementary regioselective with multivalent ligands functionalized nanoparticles may be also used for the coupling of particles with different size, shape, or composition, as well as a control of the interparticle distance.  相似文献   

16.
Simple methods of preparing silver and gold nanoshells on the surfaces of monodispersed polystyrene microspheres of different sizes as well as of silver nanoshells on free-standing gold nanoparticles are presented. The plasmon resonance absorption spectra of these materials are presented and compared to predictions of extended Mie scattering theory. Both silver and gold nanoshells were grown on polystyrene microspheres with diameters ranging from 188 to 543 nm. The commercially available, initially carboxylate-terminated polystyrene spheres were reacted with 2-aminoethanethiol hydrochloride (AET) to yield thiol-terminated microspheres to which gold nanoparticles were then attached. Reduction of silver nitrate or gold hydroxide onto these gold-decorated microspheres resulted in increasing coverage of silver or gold on the polystyrene core. The nanoshells were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and UV–vis spectroscopy. By varying the core size of the polystyrene particles and the amount of metal (silver or gold) reduced onto them, the surface plasmon resonance of the nanoshell could be tuned across the visible and the near-infrared regions of the electromagnetic spectrum. Necklace-like chain aggregate structures of gold core–silver shell nanoparticles were formed by reducing silver nitrate onto free citrate-gold nanoparticles. The plasmon resonance absorption of these nanoparticles could also be systematically tuned across the visible spectrum.  相似文献   

17.
A one-step process was used for the preparation of gold and silver nanoparticles stabilized by an aminophthalocyanine macrocycle. The resultant nanoparticles were characterized by absorption spectra, infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The nanoparticles were found to possess relatively narrow size distribution. The gold nanoparticles have an average diameter of ~2 nm, while silver particles have 4–5 nm. Preliminary studies on fluorescence and surface enhanced Raman spectroscopy were carried out using these nanoparticles. Fluorescence studies indicate that gold nanoparticles do not quench the fluorescence, while silver nanoparticles do. The stabilized nanoparticles showed enhancement of the Raman signals, thus revealing that they are good substrates for surface enhanced Raman scattering studies.  相似文献   

18.
The effect of network parameters of three-dimensionally crosslinked polyacrylic optically transparent matrices on the generation of surface plasmon resonance of gold nanoparticles forming during irradiation of Au3+ salt solutions in a liquid acrylic composite is studied. During the UV irradiation of a solution, the photoreduction of gold and the photoinitiated polymerization of acrylates proceed simultaneously to form transparent colorless films in which, after subsequent light and/or heat treatment, an absorption band near 550 nm that corresponds to the plasmon resonance of nanosize metal particles is generated. During the photoreduction of gold salt in matrices of oligo(urethane acrylate) composites with similar structures of the oligomeric block, the parameters of the three-dimensional network—the internodal and interchain distances—affect the rate of generation of gold nanoparticles but not the limiting value of optical density for the plasmon-resonance band of nanoparticles. Polyacrylate matrices may serve as a registering medium for optical data recording.  相似文献   

19.
Gold-silver binary nanoparticles, which feed atomic ratios of gold to silver were 3:1, 1:1, and 1:3, were prepared. These particles were stabilized by amine-terminated (generation (G) 3.0 and 5.0) and carboxyl-terminated (G 3.5 and 5.5) poly(amidoamine) (PAMAM) dendrimers in water. UV-vis spectra indicate that the particles are not mere physical mixtures of monometallic particles or core/shell type but alloy. According to transmission electron microscope (TEM) observation, the mean diameters of the particles were 7-10 nm for silver particles and 3-4 nm for both gold and alloy particles, respectively. Catalytic activities for reduction of p-nitrophenol were investigated by monitoring the absorbance at 400 nm during the reaction. They were proportional to the feed ratio of gold in the particles and showed a maximum at the ratio of Au:Ag=3:1.  相似文献   

20.
Deposition of nanoparticles on the surface of a variety of materials is a subject of great interest due to their potential applications in electronic devices, sensing, catalysis and bio-medical sciences. In this context, we have explored and compared various methodologies to generate gold and silver nanoparticles on the surface of cellulose fibers. It was found that boiling of the cellulose fibers in alkaline solution of gold and silver salts led to the formation and immobilization of gold and silver nanoparticles. However, in case of lecithin treated and thiol-modified cellulose fibers, high temperature was not essentially required for the formation and deposition of nanoparticles on cellulose substrate. In both these cases, fairly uniform metal nanoparticles were obtained in good yields (~43 wt% gold loading in case of thiol modified cellulose fibers) at room temperature. Borohydride-reduction method resulted in relatively lower loading (~22 wt%) with a wide size distribution of gold and silver nanoparticles on cellulose fibers. All these nanoparticle–cellulose composites were thoroughly characterized using scanning electron microscopy, energy dispersive X-ray, Fourier transform infrared spectroscopy, UV–visible spectroscopy, and elemental analyzer. Thiol modified cellulose–gold nanoparticle composites served as active catalysts in the reduction of 4-nitrophenol into 4-aminophenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号