首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toxic organophosphorus compounds (e.g., pesticides and nerve agents) are known to react with nucleophilic side chains of different amino acids (phosphylation), thus forming adducts with endogenous proteins. Most often binding to serine, tyrosine, or threonine residues is described as being of relevance for toxicological effects (e.g., acetylcholinesterase and neuropathy target esterase) or as biomarkers for post-exposure analysis (verification, e.g., albumin and butyrylcholinesterase). Accordingly, identification of novel protein targets might be beneficial for a better understanding of the toxicology of these compounds, revealing new bioanalytical verification tools, and improving knowledge on chemical reactivity. In the present study, we investigated the reaction of ubiquitin (Ub) with the V-type nerve agents Chinese VX, Russian VX, and VX in vitro. Ub is a ubiquitous protein with a mass of 8564.8 Da present in the extra- and intracellular space that plays an important physiological role in several essential processes (e.g., proteasomal degradation, DNA repair, protein turnover, and endocytosis). Reaction products were analyzed by matrix-assisted laser desorption/ionization-time-of-flight- mass spectrometry (MALDI-TOF MS) and μ-high-performance liquid chromatography online coupled to UV-detection and electrospray ionization MS (μHPLC-UV/ESI MS). Our results originally document that a complex mixture of at least mono-, di, and triphosphonylated Ub adducts was produced. Surprisingly, peptide mass fingerprint analysis in combination with MALDI and ESI MS/MS revealed that phosphonylation occurred with high selectivity in at least 6 of 7 surface-exposed lysine residues that are essential for the biological function of Ub. These reaction products were found not to age. In addition, we herein report for the first time that phosphonylation induced intramolecular cyclization by formation of an isopeptide bond between the ε-amino group of a formerly phosphonylated lysine and the side chain of an adjacent acidic glutamic acid residue.
Lysine residues in ubiquitin are phosphonylated by nerve agents and undergo intramolecular cyclization  相似文献   

2.
Effect of phenylalanine on the fragmentation of deprotonated peptides   总被引:1,自引:0,他引:1  
The fragmentation reactions of a variety of deprotonated dipeptides and tripeptides containing phenylalanine have been studied using energy-resolved collision-induced dissociation, isotopic labeling and MS/MS/MS experiments. The benzyl a-group has a substantial effect on the fragmentation reactions observed. When the phenylalanine is in the C-terminal position of dipeptides or tripeptides a major fragmentation reaction is elimination of neutral cinnamic acid to from a deprotonated amino acid amide (c1 ion) for dipeptides and a deprotonated dipeptide amide (c2 ion) for tripeptides. Fragmentation of the [M - H]- ions of tripeptides with phenylalanine in the central position also results in substantial formation of the deprotonated amide of the N-terminal amino acid residue. When the phenylalanine residue is in the N-terminal position elimination of C7H8 from the [M - H - CO2]- ion and formation of the benzyl anion become important fragmentation pathways. Sequence ions frequently observed are the y1 ions, "b2 ions and a3-Nt ions.  相似文献   

3.
Recent studies on amino acid occurrence in protein binding sites suggest that only a reduced number of residues are responsible for most interaction energy in protein-protein and protein-ligand interactions. Above all, tryptophan (Trp) seems to be the most frequent residue in protein's hot spots. Here we report a novel, efficient, and cost-effective method to selectively incorporate specific isotope labels into the side chains of Trp residues in recombinant proteins. We show that the method proposed allows selective NMR observation of Trp side chains that enables studies of ligand binding, protein-protein interactions, hydrogen binding, protein folding, and side chain dynamics. Examples with the protein BIR3 will be given.  相似文献   

4.
Herein we describe the development of activity-based probes toward protein tyrosine phosphatase (PTP) subfamilies. A novel phosphotyrosine analog serving as the latent trapping unit has been designed and explored. It allows addition of various amino acid residues to its C- and N-termini to extend the recognition element. As a proof-of-concept, we have synthesized three tripeptide probes, which carry the phosphotyrosine analog in the middle position and a leucinamide residue at the C-terminus. The three tripeptide probes differed only in their N-terminal amino acid (Glu, Phe, and Lys). The labeling properties of these probes were determined and the results showed the newly synthesized probes could selectively label PTPs in an activity-dependent manner. In addition, the probes’ target specificity was also shown to be influenced by the amino acid residues flanking the phosphotyrosine analog.  相似文献   

5.
Intraneuronal inclusions consisting of hypermetallated, (poly-)ubiquitinated proteins are a hallmark of neurodegeneration. To highlight the possible role played by metal ions in the dysfunction of the ubiquitin-proteasome system, here we report on zinc(II)/ubiquitin binding in terms of affinity constants, speciation, preferential binding sites and effects on protein stability and self-assembly. Potentiometric titrations allowed us to establish that at neutral pH only two species, ZnUb and Zn(2)Ub, are present in solution, in line with ESI-MS data. A change in the diffusion coefficient of ubiquitin was observed by NMR DOSY experiments after addition of Zn(II) ions, and thus indicates metal-promoted formation of protein assemblies. Analysis of (1)H, (15)N, (13)Cα and (13)CO chemical-shift perturbation after equimolar addition of Zn(II) ions to ubiquitin outlined two different metal-binding modes. The first involves a dynamic equilibrium in which zinc(II) is shared between a region including Met1, Gln2, Ile3, Phe4, Thr12, Leu15, Glu16, Val17, Glu18, Ile61 and Gln62 residues, which represent a site already described for copper binding, and a domain comprising Ile23, Glu24, Lys27, Ala28, Gln49, Glu51, Asp52, Arg54 and Thr55 residues. A second looser binding mode is centred on His68. Differential scanning calorimetry evidenced that addition of increasing amounts of Zn(II) ions does not affect protein thermal stability; rather it influences the shape of thermograms because of the increased propensity of ubiquitin to self-associate. The results presented here indicate that Zn(II) ions may interact with specific regions of ubiquitin and promote protein-protein contacts.  相似文献   

6.
The conjugation of ubiquitin (Ub) to proteins is involved in the regulation of many processes. The modification serves as a recognition element in trans, in which downstream effectors bind to the modified protein and determine its fate and/or function. A polyUb chain that is linked through internal lysine (Lys)‐48 of Ub and anchored to an internal Lys residue of the substrate has become the accepted “canonical” signal for proteasomal targeting and degradation. However, recent studies show that the signal is far more diverse and that chains based on other internal linkages, as well as linear or heterologous chains made of Ub and Ub‐like proteins and even monoUb, are recognized by the proteasome. In addition, chains linked to residues other than internal Lys were described, all challenging the current paradigm.  相似文献   

7.
DNA methyltransferases (DNMTs) including DNMT1 are a conserved family of cytosine methylases that play crucial roles in epigenetic regulation. The versatile functions of DNMT1 rely on allosteric networks between its different interacting partners, emerging as novel therapeutic targets. In this work, based on the modeling structures of DNMT1-ubiquitylated H3 (H3Ub)/ubiquitin specific peptidase 7 (USP7) complexes, we have used a combination of elastic network models, molecular dynamics simulations, structural residue perturbation, network modeling, and pocket pathway analysis to examine their molecular mechanisms of allosteric regulation. The comparative intrinsic and conformational dynamics analysis of three DNMT1 systems has highlighted the pivotal role of the RFTS domain as the dynamics hub in both intra- and inter-molecular interactions. The site perturbation and network modeling approaches have revealed the different and more complex allosteric interaction landscape in both DNMT1 complexes, involving the events caused by mutational hotspots and post-translation modification sites through protein-protein interactions (PPIs). Furthermore, communication pathway analysis and pocket detection have provided new mechanistic insights into molecular mechanisms underlying quaternary structures of DNMT1 complexes, suggesting potential targeting pockets for PPI-based allosteric drug design.  相似文献   

8.
9.
Kise KJ  Bowler BE 《Inorganic chemistry》2003,42(12):3891-3897
We have synthesized a 22 residue alanine-based peptide with a tris(bipyridyl)ruthenium(II) amino acid near the middle of the peptide which can act as a photoinducible electron donor. Two histidines spaced i, i + 4 near the C-terminus of the peptide were then cross-linked with a tetraammineruthenium(III) moiety to prenucleate the helix and provide an electron acceptor site. Introduction of the cross-link enhances the average helix content from 67% to 84% at 0 degrees C, as judged by circular dichroism spectroscopy. The temperature dependence of the mean molar residue ellipticity at 222 nm, [THETAV;](222), for the bimetalated peptide was fit to a modified Lifson-Roig helix-coil model to permit extraction of the population of helical conformation at each residue separating the electron donor and acceptor. On average, the residues between the donor and acceptor are 92% helical. Photoinduced electron transfer with a driving force of -1.0 eV and an estimated reorganization energy of 0.82 eV was measured by fluorescence quenching methods in H(2)O and D(2)O, yielding rate constants, k(ET), of 7 +/- 3 x 10(6) s(-)(1) and 5 +/- 1 x 10(6) s(-)(1) at 0 degrees C. Calculation of the electronic coupling matrix element, H(ab), with the Marcus equation yields a value of 0.19 +/- 0.4 cm(-)(1). Analysis in terms of the pathway model for electronic coupling indicates that this magnitude of H(ab) is consistent with the participation of hydrogen bonds in electronic coupling for an isolated alpha-helix.  相似文献   

10.
A novel method is proposed for the analysis of protein NOEs in solution. In this approach, chemically synthesized precursor compounds for the amino acids valine, leucine, and isoleucine are used for amino acid specific labeling of these hydrophobic residues. The methodology is based on a novel synthetic route to 12C,1H,2H Val, Leu, and Ile side chains selectively labeled with 13CH3 only at the terminal methyl group. In an otherwise 12C,1H labeled protein, discrimination between protons bound to 12C and 13C (or 15N) can be achieved using standard isotope-editing NMR pulse schemes. This strategy significantly relieves problems with spectral overlap through selective observation of interresidue methyl NOEs and will thus be a powerful extension of existing biomolecular NMR methodology.  相似文献   

11.
Uncovering the mechanisms that allow conjugates of ubiquitin (Ub) and/or Ub‐like (UBL) proteins such as Rub1 to serve as distinct molecular signals requires the ability to make them with native connectivity and defined length and linkage composition. A novel, effective, and affordable strategy for controlled chemical assembly of fully natural UBL–Ub, Ub–UBL, and UBL–UBL conjugates from recombinant monomers is presented. Rubylation of Ub and Rub1 and ubiquitination of Rub1 was achieved without E2/E3 enzymes. New residue‐specific information was obtained on the interdomain contacts in naturally‐occurring K48‐linked Rub1–Ub and Ub–Rub1, and K29‐linked Rub1–Ub heterodimers, and their recognition by a K48‐linkage‐specific Ub receptor. The disassembly of these heterodimers by major deubiquitinating enzymes was examined and it was discovered that some deubiquitinases also possess derubylase activity. This unexpected result suggests possible crosstalk between Ub and Rub1/Nedd8 signaling pathways.  相似文献   

12.
新的氨基酸受体的合成和分子识别性质研究   总被引:3,自引:0,他引:3  
从双氨基甲基手性双环胍出发,经三步反应合成了由稳定的共价键桥联双环胍、氮杂冠醚和萘环的氨基酸受体1.液-液竞争萃取和^1HNMR实验表明受体对氨基酸两性离子具有较好的侧链选择性和对映选择性,能够选择性地将L-芳香族氨基酸从水相转移到二氯甲烷有机相。  相似文献   

13.
We present a method employing top-down Fourier transform mass spectrometry (FTMS) for the rapid profiling of amino acid side-chain reactivity. The reactivity of side-chain groups can be used to infer residue-specific solvent accessibility and can also be used in the same way as H/D exchange reactions to probe protein structure and interactions. We probed the reactivity of the N-terminal and epsilon-lysine amino groups of ubiquitin by reaction with N-hydroxysuccinimidyl acetate (NHSAc), which specifically acetylates primary amines. Using a hybrid Q-FTMS instrument, we observed several series of multiply acetylated ubiquitin ions that varied with the NHSAc:protein stoichiometry. We isolated and fragmented each member of the series of acetylated ubiquitin ions in the front end of the instrument and measured the fragment ion masses in the FTMS analyzer cell to determine which residue positions were modified. As we increased the NHSAc:protein stoichiometric ratio, identification of the fragments from native protein and protein with successively increasing modification allowed the assignment of the complete order of reactivity of the primary amino groups in ubiquitin (Met 1 approximately Lys 6 approximately Lys 48 approximately Lys 63>Lys 33>Lys 11>Lys 27, Lys 29). These results are in excellent agreement with the reactivity expected from other studies and predicted from the known crystal structure of ubiquitin. The top-down approach eliminates the need for proteolytic digestion, high-performance liquid chromatographic separations and all other chemical steps except the labeling reaction, making it rapid and amenable to automation using small quantities of protein.  相似文献   

14.
NMR studies of paramagnetic proteins are hampered by the rapid relaxation of nuclei near the paramagnetic center, which prevents the application of conventional methods to investigations of the most interesting regions of such molecules. This problem is particularly acute in systems with slow electronic relaxation rates. We present a strategy that can be used with a protein with slow electronic relaxation to identify and assign resonances from nuclei near the paramagnetic center. Oxidized human [2Fe-2S] ferredoxin (adrenodoxin) was used to test the approach. The strategy involves six steps: (1) NMR signals from (1)H, (13)C, and (15)N nuclei unaffected or minimally affected by paramagnetic effects are assigned by standard multinuclear two- and three-dimensional (2D and 3D) spectroscopic methods with protein samples labeled uniformly with (13)C and (15)N. (2) The very broad, hyperfine-shifted signals from carbons in the residues that ligate the metal center are classified by amino acid and atom type by selective (13)C labeling and one-dimensional (1D) (13)C NMR spectroscopy. (3) Spin systems involving carbons near the paramagnetic center that are broadened but not hyperfine-shifted are elucidated by (13)C[(13)C] constant time correlation spectroscopy (CT-COSY). (4) Signals from amide nitrogens affected by the paramagnetic center are assigned to amino acid type by selective (15)N labeling and 1D (15)N NMR spectroscopy. (5) Sequence-specific assignments of these carbon and nitrogen signals are determined by 1D (13)C[(15)N] difference decoupling experiments. (6) Signals from (1)H nuclei in these spin systems are assigned by paramagnetic-optimized 2D and 3D (1)H[(13)C] experiments. For oxidized human ferredoxin, this strategy led to assignments (to amino acid and atom type) for 88% of the carbons in the [2Fe-2S] cluster-binding loops (residues 43-58 and 89-94). These included complete carbon spin-system assignments for eight of the 22 residues and partial assignments for each of the others. Sequence-specific assignments were determined for the backbone (15)N signals from nine of the 22 residues and ambiguous assignments for five of the others.  相似文献   

15.
In a previous study we found that a dominant fragmentation pathway observed for collision-induced dissociation (CID) of b(3)+ derived from peptides with sequence AXAG, where X is gamma-aminobutyric acid (gammaAbu) or epsilon-aminocaproic acid (Cap), involved the loss of 89 mass units (u). A neutral loss of 89 u corresponded to the free acid mass of an alanine (A) residue. This specific pathway was studied in greater detail here using a series of A(gammaAbu)AG peptides with strategic positioning of (15)N, (13)C and (2)H isotope labels. Based on the extensive labeling, several possible routes to the net elimination of 89 u are proposed. One is based on initial elimination of either aziridinone or imine and CO, followed by opening of an oxazolinone, tautomerization and elimination of H2O. Another involves formation of an aziridinone by cleavage of the N-terminal amide bond, and transfer of O and H atoms to this fragment via an H-bonded ion-molecule complex to complete the loss of 89 u. Both types of pathway include the transfer/migration of H atoms from the alpha-carbon position of gammaAbu or A residues.  相似文献   

16.
The dissociation of the amide (peptide) bond in protonated peptides, [M + H](+), is discussed in terms of the structures and energetics of the resulting N-terminal b(n) and C-terminal y(n) sequence ions. The combined data provide strong evidence that dissociation proceeds with no reverse barriers through interconverting proton-bound complexes between the segments emerging upon cleavage of the protonated peptide bond. These complexes contain the C-terminal part as a smaller linear peptide (amino acid if one residue) and the N-terminal part either as an oxazolone or a cyclic peptide (cyclic amide if one residue). Owing to the higher thermodynamic stability but substantially lower gas-phase basicity of cyclic peptides vs isomeric oxazolones, the N-terminus is cleaved as a protonated oxazolone when ionic (b(n) series) but as a cyclic peptide when neutral (accompanying the C-terminal y(n) series). It is demonstrated that free energy correlations can be used to derive thermochemical data about sequence ions. In this context, the dependence of the logarithm of the abundance ratio log[y(1)/b(2)], from protonated GGX (G, glycine; X, varying amino acid) on the gas-phase basicity of X is used to obtain a first experimental estimate of the gas-phase basicity of the simplest b-type oxazolone, viz. 2-aminomethyl-5-oxazolone (b(2) ion with two glycyl residues).  相似文献   

17.
Kinetics of the beta-elimination of the phosphate group from H-Tyr-Ser(PO3H2)-Phe-OH and H-Tyr-Thr(PO3H2)-Phe-OH and subsequent addition of thiols and amines to the dehydroalaninyl and beta-methyldehydroalaninyl residues formed, were followed by RP HPLC under alkaline conditions in the absence and presence of Ba2+ ions. By this reaction sequence, the phosphoserinyl peptide was conjugated with mono-N-(2-mercaptoethyl)amide of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (4), a mercapto-functionalized pentapeptide, H-His-Gly-Gly-His-Gly-NH(CH2)4SH, and an amino-functionalized fluorescent dye, 5-dimethylaminonaphthalene-1-[N-(5-aminopentyl)]sulfonamide (dansyl cadaverine). The beta-methyldehydroalanine residue was, in turn, observed to be a poor Michael acceptor.  相似文献   

18.
Ion mobility-mass spectrometry is used to study the new conformers of bovine ubiquitin (Ub) and the palladium(II) binding sites after the incubation with cis-[Pd(en)(H2O)2]2+ where en = ethylenediamine. Palladium(II) complexes are potentially useful proteomic reagents because they selectively bind to the side groups of methionine and histidine and hydrolytically cleave the peptide bond. Incubating 1.0 mM solution of Ub with 10.0 molar excess of cis-[Pd(en)(H2O)2]2+ results with one to four Pd2+ or Pd(en)2+ being attached to intact Ub and two conformer families at each of the 4+ to 11+ charge states. The 4+ and 5+ species exhibit a compact form, which is also observed in untreated Ub, and a new highly folded conformer. The 6+ to 10+ exhibit an elongated form, also observed in Ub, and a new partially folded conformer. The new conformers are shown to be more stable if they contain at least one Pd2+, rather than all Pd(en)2+. IM-MS/MS of [UbPd2en+5H]9+ shows that both the partially folded and elongated conformers first lose the en ligand, followed by dissociating into product ions that indicate that Met1, Glu51/Asp52, His68, and Glu16 are binding sites for Pd2+. These results suggest that Pd2+ is simultaneously binding to multiple side groups across different regions of Ub. This type of sequestering of Pd2+ probably reduces the efficiency of Pd2+ ions to selectively cleave Ub because it prevents Pd2+ anchoring to only Met or His and to an adjacent backbone amide nitrogen and forming the “activated complex” necessary for specific peptide bond cleavage.  相似文献   

19.
The presence and position of a single beta-alanine (betaA), gamma-aminobutyric acid (gammaABu) or epsilon-aminocaproic acid (Cap) residue has been shown to have a significant influence on the formation of b(n)+ and y(n)+ product ions from a series of model, protonated peptides. In this study, we examined the effect of the same residues on the formation of analogous [b3 - 1 + cat]+ products from metal (Li+, Na+ and Ag+)-cationized peptides. The larger amino acids suppress formation of b3+ from protonated peptides with general sequence AAXG (where X = beta-alanine, gamma-aminobutyric acid or epsilon-aminocaproic acid), presumably because of the prohibitive effect of larger cyclic intermediates in the 'oxazolone' pathway. However, abundant [b3 - 1 + cat]+ products are generated from metal-cationized versions of AAXG. Using a group of deuterium-labeled and exchanged peptides, we found that formation of [b3 - 1 + cat]+ involves transfer of either amide or alpha-carbon position H atoms, and the tendency to transfer the atom from the alpha-carbon position increases with the size of the amino acid in position X. To account for the transfer of the H atom, a mechanism involving formation of a ketene product as [b3 - 1 + cat]+ is proposed.  相似文献   

20.
Biochemical studies of cellular processes involving polyubiquitin have gained increasing attention. More tools are needed to identify ubiquitin (Ub)‐binding proteins. We report diazirine‐based photoaffinity probes that can capture Ub‐binding proteins in cell lysates, and show that diazirines are preferable to aryl azides as the photo‐crosslinking group, since they decrease non‐selective capture. Photoaffinity probes containing at least two Ub units were required to effectively capture Ub‐binding proteins. Different capture selectivity was observed for probes containing diubiquitin moieties with different types of linkages, thus indicating the potential to develop linkage‐dependent probes for selectively profiling Ub‐binding proteins under various cellular conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号