首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The field of carbohydrate chemistry has occupied the minds and hearts of many scientists for over a hundred years and, as we enter the twenty-first century, it continues to be both vigorous and challenging. Among the most exciting aspects of organic chemistry in the last few decades has been the interplay between the specialized subdisciplines of carbohydrate chemistry and total synthesis, each enabling and advancing the other in new directions and towards greater heights. In this review article we highlight our own adventures at the interface of these disciplines, which were driven for the most part by objectives in chemical synthesis and chemical biology. Specifically, we describe our interests and efforts to utilize carbohydrates as starting materials for total synthesis, to invent and develop new synthetic technologies for carbohydrate synthesis, to construct complex oligosaccharides in solution or on solid support, and to utilize carbohydrate templates as scaffolds for peptide mimetics and for molecular diversity construction. Finally, applications of the developed synthetic strategies and enabling technologies towards the solution of biologically significant problems are discussed.  相似文献   

2.
Carbohydrates are an attractive class of starting materials for organic syntheses because they are of natural origin, environmentally friendly, and highly functionalized, in this way promoting a sustainable chemistry. A somewhat exotic but nevertheless readily available family of carbohydrates allowing a fascinating chemistry are inositols (cyclohexane-1,2,3,4,5,6-hexols), which we currently use for the synthesis of new surfactants. In our previous work, we reported on the synthesis of a number of new regiochemically defined myo-inositol ethers and esters and studied their surface activity in aqueous solution as well as their ability to form thermotropic liquid crystals. It turned out that the hydrophilicity of the myo-inositol head group alone does not ensure sufficient water solubility of these surfactants. To improve the water solubility, we increased the inositol head group by the introduction of a tri(ethylene oxide) unit. The resulting surfactant is the first representative of a new class of inositol-based surfactants (CiEjIk) that combine the properties of classical sugar surfactants (CnGm) and oligo(ethylene oxide) alkyl ether surfactants (CiEj).  相似文献   

3.
郭建  庄顺  陈松华  张士博  袁耀锋 《有机化学》2009,29(8):1264-1266
二茂铁甲醛是有机合成化学中一个重要的中间体, 利用它可以合成各种功能二茂铁衍生物. 然而异环取代的二茂铁甲醛因合成难度较大使其应用受到限制, l’-碘代二茂铁甲醛分子内因为有较多的反应活性点, 从而被广泛应用到功能金属有机分子的设计合成中. 合成该物质的传统方法不仅路线长, 且需要使用昂贵的金属有机试剂. 我们利用改进后的合成方法, 以二茂铁为起始原料经三步反应合成了1’-碘代二茂铁甲醛. 该方法不仅缩短了合成路线, 简化了反应条件, 且避免使用苛刻的反应条件和贵重的有机锂(锡)试剂, 是目前合成该化合物最简单的方法.  相似文献   

4.
The Mitsunobu reaction plays a vital part in organic chemistry due to its wide synthetic applications. It is considered as a significant reaction for the interconversion of one functional group (alcohol) to another (ester) in the presence of oxidizing agents (azodicarboxylates) and reducing agents (phosphines). It is a renowned stereoselective reaction which inverts the stereochemical configuration of end products. One of the most important applications of the Mitsunobu reaction is its role in the synthesis of natural products. This review article will focus on the contribution of the Mitsunobu reaction towards the total synthesis of natural products, highlighting their biological potential during recent years.  相似文献   

5.
In the area of peptide and nucleic acid chemistry and biology, high-throughput synthesis has played an important role in providing useful small-molecule-based chemical probes in understanding the structure and function relationships. The past several years, there has been a constant rise in interest toward understanding the biological roles and functions of another important class of biomolecules, i.e., carbohydrates and carbohydrate conjugates. Although at early stages, in recent years, several groups have developed high-throughput synthetic methods to obtain complex carbohydrates or carbohydrate-like small-molecules. The present review article summarizes some of these developments.  相似文献   

6.
In this account our aim was to give an insight into the application of metathesis protocols (ROM, RCM, RCEYM, CM, RRM) for the synthesis of various azaheterocyclic frameworks. Due to the high biological potential and importance in peptide chemistry and drug design of β-amino acids our intention is to give a highlight on the synthetic procedures and transformation of these class of compounds with the above-mentioned metathesis strategies with emphasis on selectivity, stereocontrol, substrate-directing effect or functional group tolerance.  相似文献   

7.
The chemistry of compounds containing a carbon atom bearing three or four different labile functional groups has received little attention. These compounds should be of considerable significance in theoretical and synthetic organic chemistry. Among the compounds with multifunctional structures, those having both carbonyl and halogen groups in addition to other heteroatom groups seem especially valuable from a synthetic viewpoint. Their potential use as probes in pure and applied synthetic chemistry has not been exploited, presumably because of structural instability and a paucity of synthetic approaches. Keeping this background in mind, we focused on the synthesis of a new class of multifunctional carbon compounds in which ester carbonyl, halogen, and other heteroatom-derived functional groups are directly attached to the central carbon atom. Fluorine was chosen as the halogen because of the inherent stability of the CF bond and because of the fundamental chemical and biological interest in fluorine-containing compounds. The synthesis, reactions, and some applications of various fluorine-containing multifunctional carbon compounds are described.  相似文献   

8.
Porous carbon materials have attracted much attention in the field of organic synthesis in recent years,due to their tunable properties, excellent catalytic activity and stability. Biomass-based carbohydrates emerge as an ideal precursor for the generation of these materials owing to their renewability, low cost,non-toxicity and high content of functional groups. Thus, carbon materials prepared from carbohydrates is of considerable importance for the sustainable development of organic chemistry....  相似文献   

9.
田伟生  史勇 《化学进展》2010,22(4):537-556
本文总结了本课题组在资源化学领域的研究工作进展,内容涉及到天然资源化合物甾体皂甙元和非天然资源性化合物氟烷基磺酰氟的反应及其在有机合成中的应用。首先介绍了原子经济性地利用甾体皂甙元资源的策略与方法。为解决甾体皂甙元资源在工业利用过程产生的环境污染和资源浪费问题,我们发展了用30%双氧水代替铬酐氧化降解假甾体皂甙元的方法,使“百分之百”利用甾体皂甙元资源的理想成为现实。双氧水与乙酸原地产生的过氧酸直接氧化甾体皂甙元成为孕甾-16,20-二醇类化合物和4R-甲基-5羟基戊酸内酯,通过甾体皂甙元的非正常Baeyer-Villiger反应合成了甾体-16羟基-22-内酯类化合物和3R-甲基-5羟基戊酸内酯。所获甾体中间体和带甲基侧链的双官能团手性试剂被应用于部分甾体药物、昆虫信息素、香料和天然产物的合成中。另外还介绍了利用甾体皂甙元完整骨架合成目标分子的资源性化合物利用策略。本文第二部分内容介绍了氟烷基磺酰氟资源利用的策略和方式。反应共生是我们提高氟烷基磺酰氟资源利用率的新思路,基于共生反应概念,研究了邻二醇环氧化反应、烯烃环氧化反应和碳正离子重排等反应与氟烷基磺酰氟水解反应的共生反应,并且介绍了其合成应用实例。  相似文献   

10.
含氮杂环化合物是一类非常重要的有机杂环化合物,也是有机合成化学的研究热点之一。本文首先简要介绍了含氮杂环化合物在天然产物、合成药物和功能材料中的分布及其广泛应用;然后以不同过渡金属催化剂为线索,按照时间由远至近的顺序分别概述了Pd、Ag、Fe、Ni、Zn、Cu等六类过渡金属催化剂在合成五、六元含氮杂环化合物方面的研究进展,对反应条件、反应特征进行了概括;最后对含氮杂环化合物合成领域的过渡金属催化剂的整体发展趋势进行了归纳总结。  相似文献   

11.
Because of their biological activity, stability in vivo, the rigid spatial positioning of their substituents, and their synthetic challenges, heterocyclic aromates continue to be of interest to both academic and industrial medicinal chemists. Currently, many drug-like heterocyclic aromates are prepared via solid-phase organic chemistry methods. This review examines the applicability of those methods towards combinatorial chemistry with respect to the basic demands of such an approach: 1) synthesis, work-up and subsequent purification should be easily automated enabling the efficient simultaneous synthesis of large numbers of highly pure compounds in a minimum amount of time, 2) large diversity among the ligands to be synthesized, 3) high conversion rates of the individual reaction steps, and 4) the use of commercially available starting materials. Although many methods have been developed for the synthesis of heterocyclic aromates, very few of the available methods enable the synthesis of highly diverse heteroaromatic libraries.  相似文献   

12.
Conjugation of different molecular species using copper(I)‐catalyzed click reaction between azides and terminal alkynes is among the best available methods to prepare multifunctional compounds. The effectiveness of this method has provided wider acceptance to the concept of click chemistry, which is now widely employed to synthesize densely functionalized organic molecules. This article summarizes the contributions from our group in the development of new methods for the synthesis of functional molecules using copper(I)‐catalyzed click reactions. We have developed very efficient methods for the synthesis of peptides and amino acids conjugated with carbohydrates, thymidine and ferrocene. We have also developed an efficient strategy to synthesize triazole‐fused heterocycles from primary amines, amino alochols and diols. Finally, an interesting method for the synthesis of pseudodisaccharides linked through triazoles, starting from carbohydrate‐derived donor‐acceptor cyclopropanes is discussed.  相似文献   

13.
While amino acids, terpenes and alkaloids have found broad application as tools in stereoselective organic synthesis, carbohydrates have only lately been recognised as versatile starting materials for chiral auxiliaries, reagents, ligands and organocatalysts. The structural diversity of carbohydrates and the high density of functional groups offer a wide variety of opportunities for derivatization and tailoring of synthetic tools to a specific problem.  相似文献   

14.
Thioethers are highly prevalent functional groups in organic compounds of natural and synthetic origin but remain remarkably underexplored as starting materials in desulfurative transformations. As such, new synthetic methods are highly desirable to unlock the potential of the compound class. In this vein, electrochemistry is an ideal tool to enable new reactivity and selectivity under mild conditions. Herein, we demonstrate the efficient use of aryl alkyl thioethers as alkyl radical precursors in electroreductive transformations, along with mechanistic details. The transformations proceed with complete selectivity for C(sp3)−S bond cleavage, orthogonal to that of established transition metal-catalyzed two-electron routes. We showcase a hydrodesulfurization protocol with broad functional group tolerance, the first example of desulfurative C(sp3)−C(sp3) bond formation in Giese-type cross-coupling and the first protocol for electrocarboxylation of synthetic relevance with thioethers as starting materials. Finally, the compound class is shown to outcompete their well-established sulfone analogues as alkyl radical precursors, demonstrating their synthetic potential for future desulfurative transformations in a one-electron manifold.  相似文献   

15.
李娟  郑基深  沈非  方葛敏  郭庆祥  刘磊 《化学进展》2007,19(12):1866-1882
含有非天然氨基酸的蛋白质(如翻译后修饰蛋白质、修饰有探针分子的蛋白质等)是化学生物学中重要的生理活性分子。这些分子难以通过生物表达来获取,而必须使用化学方法来合成。半胱氨酸肽片段连接方法是目前应用于蛋白质化学全合成中的一种重要方法,该方法能够在温和的水溶液中高效地实现肽片段的连接,从而生成天然或者非天然的蛋白质。本文系统地综述了半胱氨酸肽片段连接方法的基本原理,详细讨论了近年来人们对该方法的一些重要改进。最后又介绍了该方法在几类重要的蛋白质分子合成中的代表性应用。  相似文献   

16.
Selenium-based methods have developed rapidly over the past few years asnd organoselenium chemistry has become a very useful tool in the hands of synthetic chemists. The different reactivity of selenium-containing compounds in contrast to the sulfur analogues has led to versatile and new synthetic methods in organic chemistry. Various functionalities can be selectively introduced into complex molecules under very mild reaction conditions. In this review, the principles of organoselenium chemistry are traced back to their origins and are highlighted with respect to stereoselective synthesis. The unique properties of selenium allow the development of new and highly selective transformations, which can be employed subsequently in new routes for the synthesis of versatile chiral building blocks and for natural product synthesis.  相似文献   

17.
Starburst dendrimers are three-dimensional, highly ordered oligomeric and polymeric compounds formed by reiterative reaction sequences starting from smaller molecules—“initiator cores” such as ammonia or pentaerythritol. Protecting group strategies are crucial in these syntheses, which proceed via discrete “Aufbau” stages referred to as generations. Critical molecular design parameters (CMDPs) such as size, shape, and surface chemistry may be controlled by the reactions and synthetic building blocks used. Starburst dendrimers can mimic certain properties of micelles and liposomes and even those of biomolecules and the still more complicated, but highly organized, building blocks of biological systems. Numerous applications of these compounds are conceivable, particularly in mimicking the functions of large biomolecules as drug carriers and immunogens. This new branch of “supramolecular chemistry” should spark new developments in both organic and macromolecular chemistry.  相似文献   

18.
Polycycles are abundantly present in numerous advanced chemicals, functional materials, bioactive molecules and natural products. However, the strategies for the synthesis of polycycles are limited to classical reactions and transition metal-catalyzed cross-coupling reactions, requiring pre-functionalized starting materials and lengthy synthetic operations. The emergence of novel approaches shows great promise for the fields of organic/medicinal/materials chemistry. Among them, transition metal-catalyzed C−H activation followed by intermolecular annulation reactions prevail, due to their straightforward manner with high atom- and step-economy, providing rapid, concise and efficient methods for the construction of diverse polycycles. Several strategies have been developed for the synthesis of polycycles, relying on sequential multiple C−H activation/annulation, or combination of C−H activation/annulation and further interaction with a proximal group, or merger of C−H activation with a cycloaddition reaction, or in situ formation of the directing group. These are attractive, efficient, step- and atom-economic methods starting from commercially available materials. This Minireview will provide an introduction to transition metal-catalyzed C−H activation for the synthesis of polycycles, helping researchers to discover indirect connections and reveal hidden opportunities. It will also promote the discovery of novel synthetic strategies relying on C−H activation.  相似文献   

19.
Due to its excellent bioactivity profile, which is increasingly utilized in pharmaceutical and synthetic chemistry, spirooxindole is an important core scaffold. We herein describe an efficient method for the construction of highly functionalized new spirooxindolocarbamates via a gold-catalyzed cycloaddition reaction of terminal alkynes or ynamides with isatin-derived ketimines. This protocol has a good functional group compatibility, uses readily available starting materials, mild reaction conditions, low catalyst loadings and no additives. It enables the transformation of various functionalized alkyne groups into cyclic carbamates. Gram-scale synthesis was achieved and DFT calculations verify the feasibility of the mechanistic proposal. Some of the target products exhibit good to excellent antiproliferative activity on human tumor cell lines. In addition, one of the most active compounds displayed a remarkable selectivity towards tumor cells over normal ones.  相似文献   

20.
Due to the central role played by α-amino acid in chemistry and biology, the development of versatile and new methodology for the synthesis of natural and unnatural α-amino acid has emerged as an important and challenging synthetic endeavour for organic chemists.[1] Among the various methodologies reported for α-amino acid synthesis, [2,3] the solid-phase organic synthesis (SPOS) has served as an important approach. [4] However, inherent prob lems on solid supports are reactive site accessibility, site-site interaction and monitoring of the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号