首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)的B3LYP方法对以苯基吡唑ppz为主配体的4种Ir配合物Ir(ppz)3, Ir(ppz)2(acac), Ir(ppz)2(pic)和Ir(ppz)2(dbm)的电子结构和光谱性质进行了理论研究. 计算结果表明, 辅助配体的改变对Ir配合物的最高占据轨道(HOMO)的影响不大, 但会显著的降低分子最低空轨道(LUMO)的能级, 从而调节Ir配合物的HOMO和LUMO间的能隙. 4种配合物对应的发射跃迁分别为Ir(ppz)3:d(Ir)+π(ppz)→π*(ppz); Ir(ppz)2(pic):d(Ir)+(ppz)→π*(pic); Ir(ppz)2(acac), Ir(ppz)2(dbm):d(Ir)+π(acacdbm)→π*(acacdbm). 金属配合物的发光颜色可以通过选择合适的辅助配体调节.  相似文献   

2.
The electronic structures and spectral properties of three Re(I) complexes [Re(CO)3XL] (X = Br, Cl; L = 1-(4-5'-phenyl-1,3,4-oxadiazolylbenzyl)-2-pyridinylbenzoimidazole (1), 1-(4-carbazolylbutyl)-2-pyridinylbenzoimidazole (2), and 2-(1-ethylbenzimidazol-2-yl)pyridine (3)) were investigated theoretically. The ground and the lowest lying triplet excited states were fully optimized at the B3LYP/LANL2DZ and CIS/LANL2DZ levels, respectively. TDDFT/PCM calculations have been employed to predict the absorption and emission spectra starting from the ground and excited state geometries, respectively. The lowest lying absorptions were calculated to be at 481, 493, and 486 nm for 1-3, respectively, and all have the transition configuration of HOMO-->LUMO. The lowest lying transitions can be assigned as metal/ligand-to-ligand charge transfer (MLCT/LLCT) character for 1, ligand-to-ligand charge transfer (LLCT) character for 2, and mixed MLCT/LLCT and intraligand pi-->pi* charge transfer (ILCT) character for 3. The emission of 1 at 551 nm has the MLCT/(3)LLCT character, 2 has the (3)MLCT/(3)LLCT character at 675 nm, and the 651 nm transition of 3 has the character of (3)MLCT/(3)LLCT/(3)ILCT. Ionization potentials (IP) and electron affinities (EA) calculations show that the comparable EA and smaller IP values and the relatively balanceable charges transfer ability of 2 with respect to 1 and 3 result in the higher efficiency of OLEDs. The calculated results show that the absorption and emission transition character and device's efficiency can be changed by altering the ancillary ligands.  相似文献   

3.
The synthesis and photophysical characterization of a series of (N,C(2')-(2-para-tolylpyridyl))2 Ir(LL') [(tpy)2 Ir(LL')] (LL' = 2,4-pentanedionato (acac), bis(pyrazolyl)borate ligands and their analogues, diphosphine chelates and tert-butylisocyanide (CN-t-Bu)) are reported. A smaller series of [(dfppy)2 Ir(LL')] (dfppy = N,C(2')-2-(4',6'-difluorophenyl)pyridyl) complexes were also examined along with two previously reported compounds, (ppy)2 Ir(CN)2- and (ppy)2 Ir(NCS)2- (ppy = N,C(2')-2-phenylpyridyl). The (tpy)2 Ir(PPh2CH2)2 BPh2 and [(tpy)2 Ir(CN-t-Bu)2](CF3SO3) complexes have been structurally characterized by X-ray crystallography. The Ir-C(aryl) bond lengths in (tpy)2 Ir(CN-t-Bu)2+ (2.047(5) and 2.072(5) A) and (tpy)2 Ir(PPh2CH2)2 BPh2 (2.047(9) and 2.057(9) A) are longer than their counterparts in (tpy)2 Ir(acac) (1.982(6) and 1.985(7) A). Density functional theory calculations carried out on (ppy)2 Ir(CN-Me)2+ show that the highest occupied molecular orbital (HOMO) consists of a mixture of phenyl-pi and Ir-d orbitals, while the lowest unoccupied molecular orbital is localized primarily on the pyridyl-pi orbitals. Electrochemical analysis of the (tpy)2 Ir(LL') complexes shows that the reduction potentials are largely unaffected by variation in the ancillary ligand, whereas the oxidation potentials vary over a much wider range (as much as 400 mV between two different LL' ligands). Spectroscopic analysis of the cyclometalated Ir complexes reveals that the lowest energy excited state (T1) is a triplet ligand-centered state (3LC) on the cyclometalating ligand admixed with 1MLCT (MLCT = metal-to-ligand charge-transfer) character. The different ancillary ligands alter the 1MLCT state energy mainly by changing the HOMO energy. Destabilization of the 1MLCT state results in less 1MLCT character mixed into the T1 state, which in turn leads to an increase in the emission energy. The increase in emission energy leads to a linear decrease in ln(k(nr)) (k(nr) = nonradiative decay rate). Decreased 1MLCT character in the T1 state also increases the Huang-Rhys factors in the emission spectra, decreases the extinction coefficient of the T1 transition, and consequently decreases the radiative decay rates (k(r)). Overall, the luminescence quantum yields decline with increasing emission energies. A linear dependence of the radiative decay rate (k(r)) or extinction coefficient (epsilon) on (1/deltaE)2 has been demonstrated, where deltaE is the energy difference between the 1MLCT and 3LC transitions. A value of 200 cm(-1) for the spin-orbital coupling matrix element 3LC absolute value(H(SO)) 1MLCT of the (tpy)2 Ir(LL') complexes can be deduced from this linear relationship. The (fppy)2 Ir(LL') complexes with corresponding ancillary ligands display similar trends in excited-state properties.  相似文献   

4.
The series of heteroleptic cyclometalated Ir(III) complexes for organic light‐emitting display application have been investigated theoretically to explore their electronic structures and spectroscopic properties. The geometries, electronic structures, and the lowest‐lying singlet absorptions and triplet emissions of Ir‐(pmb)3 and theoretically designed models Ir‐(Rpmb)2pic were investigated with density functional theory (DFT)‐based approaches, where pmb = phenyl‐methyl‐benzimidazolyl, pic = picolinate, and R = H/F. Their structures in the ground and excited states have been optimized at the DFT/B3LYP/LANL2DZ and TDDFT/B3LYP/LANL2DZ levels, and the lowest absorptions and emissions were evaluated at B3LYP and M062X level of theory, respectively. The mobility of holes and electrons were studied computationally based on the Marcus theory. Calculations of ionization potentials were used to evaluate the injection abilities of holes into these complexes. The reasons for the higher electroluminescence efficiency and phosphorescence quantum yields in Ir‐(Rpmb)2pic than in Ir‐(pmb)3 have been investigated. The designed moleculars are expected to be highly emissive in pure‐blue region. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
The geometries, electronic structures, and spectroscopic properties of a series of novel cationic iridium(III) complexes [trans-(C/N)(2)Ir(PH(3))(2)]+ (C/N = 2-phenylpyridine, 1; benzoquinoline, 2; 1-phenylpytazolato, 3; 2-(4,6-difluorophenyl)pyridimato, 4) were investigated theoretically. The ground- and excited-state geometries were optimized at the B3LYP/LANL2DZ and CIS/LANL2DZ levels, respectively. The optimized geometry structural parameters agree well with the corresponding experimental results. The unoccupied molecular orbitals are dominantly localized on the C/N ligand, while the occupied molecular orbitals are composed of Ir atom and C/N ligand. Under the time-dependent density functional theory (TDDFT) level with the polarized continuum model (PCM) model, the absorption and phosphorescence in acetonitrile (MeCN) media were calculated based on the optimized ground- and excited-state geometries, respectively. The calculated results showed that the lowest-lying absorptions at 364 nm (1), 389 nm (2), 317 nm (3), and 344 nm (4) are all attributed to a {[d(yz)(Ir) + pi(C/N)] --> [pi*(C/N)]} transition with metal-to-ligand and intraligand charge transfer (MLCT/ILCT) characters; moreover, the phosphorescence at 460 (1) and 442 nm (4) originates from the 3{[d(yz)(Ir) + pi(C/N)] [pi*(C/N)]} (3)MLCT/(3)ILCT excited state, while that at 505 (2) and 399 nm (3) can be described as originating from different types of (3)MLCT/(3)ILCT excited state (3){[d(xy)(Ir) + pi(C/N)] [pi*(C/N)]}. The calculated results also revealed that the absorption and emission transition character can be altered by adjusting the pi electron-withdrawing groups and, furthermore, suggested that the phosphorescent color can be tuned by changing the pi-conjugation effect of the C/N ligand.  相似文献   

6.
Electronic structures, absorptions and emissions of a series of (ppy)2Ir(acac) derivatives (ppy = 2- phenylpyridine; acac = acetoylacetonate) with fluoro substituent on ppy ligands were investigated theoretically. The ground and excited states geometries were fully optimized at B3LYP/LANL2DZ and CIS/LANL2DZ level, respectively. The HOMO is composed of d(Ir) and π(CN), while the LUMO is localized on CN ligand. The absorptions and emissions in CH2Cl2 media were calculated under the TD–DFT level with PCM model. The lowest-lying absorption of these complexes is dominantly attributed to metal-to-ligand and intraligand charge transfer (MLCT/ILCT) transitions and the emission of them originates from 3MLCT/3ILCT excited states. The absorption and emission of these complexes are blue-shifted by increasing the number of fluoro on phenyl, but the spectra are red-shifted by adding fluoro on pyridyl. While a single fluoro of different substituted site on phenyl results in different extent blue-shift to the spectra.  相似文献   

7.
The series of novel mixed-ligand iridium(III) complexes Ir(Mebib)(ppy)X (Mebib = bis(N-methylbenzimidazolyl)benzene and ppy = phenylpyridine; X = Cl, 1; X = -C[triple band]CH, 2; X = CN, 3) have been investigated theoretically to explore their electronic structures and spectroscopic properties. The ground and excited state geometries have been fully optimized at the B3LYP/LANL2DZ and CIS/LANL2DZ levels, respectively. The optimized geometry structural parameters agree well with the corresponding experimental results. The HOMO of 1 and 3 are mainly localized on the Ir atom, Mebib, and ppy ligand, but that of 2 has significant X ligand composition. Absorptions and phosphorescences in CH2 Cl2 media have been calculated using the TD-DFT level of theory with the PCM model based on the optimized ground and excited state geometries, respectively. The lowest lying absorptions of 1 and 3 at 444 and 416 nm are attributed to a {[d(yz)(Ir) + pi(Mebib) + pi(ppy)] --> [pi*(Mebib)]} transition with metal-to-ligand, ligand-to-ligand, and intra-ligand charge transfer (MLCT/LLCT/ILCT) character, whereas that of 2 at 458 nm is related to a {[d(yz)(Ir) + pi(Mebib) + pi(ppy) + pi(C[triple band]CH)] --> [pi*(Mebib)]} transition with MLCT/LLCT/ILCT and X ligand-to-ligand charge transfer (XLCT) transition character. The phosphorescence of 1 and 3 at 565 and 543 nm originates from the 3{[dy(yz)(Ir) + pi(Mebib) + pi(ppy)] [pi*(Mebib)]} excited state, while that of 2 at 576 nm originates from the 3{[d(yz)(Ir) + pi(Mebib) + pi(ppy) + pi(C[triple band]CH)] [pi*(Mebib)]} excited state. The calculation results show that the absorption and emission transition character can be changed by altering the pi electron-withdrawing ability of the X ligand and the phosphorescent color can be tuned by adjusting the X ligand.  相似文献   

8.
Two novel iridium(III) complexes, [Ir(dfppy)(2)(pmc)] and [Ir(ppy)(2)(pmc)] (dfppy = 2-(4',6'-difluoro-phenyl)pyridine, ppy = 1-phenyl-pyridine), were designed and synthesized using 2-carboxyl-pyrimidine (Hpmc) as an ancillary ligand. Single crystals were obtained and characterized by single crystal X-ray diffraction. The tetrametallic complexes {[(C^N)(2)Ir(μ-pmc)](3)EuCl(3)} (C^N = dfppy, ppy) were synthesized using the iridium(III) complexes as "ligands". Photophysical and theoretical studies indicate that [Ir(dfppy)(2)(pmc)] is more suitable for sensitizing the emission of Eu(III) ions than [Ir(ppy)(2)(pmc)].  相似文献   

9.
We report a theoretical analysis of a series of heteroleptic iridium(III) complexes (dox)(2)Ir(acac) [dox = 2,5-diphenyl-1,3,4-oxadiazolato-N,C(2), acac = acetylacetonate] (1a), (fox)(2)Ir(acac) [fox = 2,5-bis(4-fluorophenyl)-1,3,4-oxadiazolato-N,C(2)] (1b), (fox)(2)Ir(Et(2)dtc) [Et(2)dtc = N,N'-diethyldithiocarbamate] (2), (fox)(2)Ir(Et(2)dtp) [Et(2)dtp = O,O'-diethyldithiophosphate] (3), (pypz)(2)Ir(acac) [pypz = 3,5-di(2-pyridyl)pyrazole] (4a), (O-pypz)(2)Ir(acac) (4b), (S-pypz)(2)Ir(acac) (4c) and (bptz)(2)Ir(acac) [bptz = 3-tert-butyl-5-(2-pyridyl)triazole] (5) by using the density functional theory (DFT) method to investigate their electronic structures and photophysical properties and obtain further insights into the phosphorescent efficiency mechanism. Meanwhile, we also investigate the influence of ancillary and cyclometalated ligands on the properties of the above complexes. The results reveal that the nature of the ancillary ligands can influence the electron density distributions of frontier molecular orbitals and their energies, resulting in change in transition character and emission color, while the different cyclometalated ligands have a large impact on the charge transfer performances of the studied complexes. The calculated absorption and luminescence properties of the four complexes 1a, 1b, 2 and 3 are compared with the available experimental data and a good agreement is obtained. Further, the assumed complexes 4a and 4b possess better charge transfer abilities and more balanced charge transfer rates, and they are potential candidates as blue-emitting materials.  相似文献   

10.
We report the preparation of a series of new heteroleptic Ir(III) metal complexes chelated by two cyclometalated 1-(2,4-difluorophenyl)pyrazole ligands (dfpz)H and a third ancillary bidentate ligand (L=X). Such an intricate design lies in a core concept that the cyclometalated dfpz ligands always warrant a greater pi pi* gap in these series of iridium complexes. Accordingly, the lowest one-electron excitation would accommodate the pi* orbital of the ancillary L=X ligands, the functionalization of which is then exploited to fine-tune the phosphorescent emission wavelengths. Amongst the L=X ligands designed, three classes (series 1-3) can be categorized, and remarkable bathochromic shifts of phosphorescence were observed by (i) replacing the 2-benzoxazol-2-yl substituent (1a) with the 2-benzothiazol-2-yl group (1b) in the phenolate complexes, (ii) converting the pyridyl group (2a) to the pyrazolyl group (2b) and even to the isoquinolyl group (2c) in the pyrazolate complexes and (iii) extending the pi-conjugation of the benzimidazolate ligand from 3a to 3b. Single-crystal X-ray diffraction study on complex [(dfpz)Ir(bzpz)] (2b) was conducted to confirm their general molecular architectures. Complex 2b was also used as a representative example for fabrication of multilayered, green-emitting phosphorescent OLEDs using the direct thermal evaporation technique.  相似文献   

11.
采用密度泛函理论B3PW91和UB3PW91方法, 分别对4种Ir(Ⅲ)配合物(ppy)2Ir(acac)(1, ppy=2-苯基吡啶, acac=乙酰丙酮)、(npy)2Ir(acac)(2, npy=2-萘-1-基吡啶)、(pq)2Ir(acac)(3, pq=2-苯基喹啉)和(bzq)2Ir(acac)(4, bzq=苯并喹啉)进行了基态和激发态的几何优化, 在此基础上用TD-DFT方法计算了吸收和发射光谱. 结果表明, 随着ppy配体上并苯环位置的变化, 参与最大吸收和发射的分子轨道能隙降低程度不同, 从而使配合物2, 3, 4的最大吸收和发射光谱都比配合物1发生红移, 其中在吡啶环上增加苯环对吸收光谱的影响最大. 这4个分子最大吸收波长的顺序为1<2<4<3, 而最大发射波长顺序则是1<4<3<2. 由于配合物2的两个苯环上H的强排斥作用降低了其共轭程度, 使分子发生很大程度的扭曲, 导致其斯托克位移最大.  相似文献   

12.
从理论上研究了一系列Ir(Ⅲ)[(C^N)2IrL]+[C^N=ppy, L=pzpy(1); C^N=dfppy, L=pzpy(2); C^N=ppy, L=pybi(3); C^N=tpy, L=acac(4); 其中ppy=2-苯基吡啶, dfppy=2-(2,4-双氟苯基)吡啶, pzpy=2-吡唑基吡啶, pybi=1-苯基-2-(吡啶基)-1H-苯并咪唑, tpy=2-(4-甲苯基)-吡啶, acac=乙酰丙酮]配合物的结构和光谱特征. 分别在B3LYP/LanL2DZ和CIS/LanL2DZ计算水平下优化了它们的基态和激发态结构. 计算得到的Ir-N, Ir-C和Ir-O基态键长和相应实验值符合较好. 在激发态下, Ir-N和Ir-C键长增加了约0.0003~0.003 nm, 而Ir-O键长则缩短了约0.0012 nm. 在含时密度泛函理论(TD-DFT)计算水平下, 结合极化连续介质模型(PCM), 得到配合物1~4的最低能的吸收和发射分别出现在398 nm(1), 370 nm(2), 419 nm(3)和437 nm(4)以及511 nm(1), 457 nm(2), 602 nm(3)和479 nm(4). 配合物1, 2, 4的跃迁属于d(Ir)+π(C^N)→π*(C^N)的电荷转移跃迁, 而化合物3的跃迁则归因于d(Ir)+π(C^N)→π*(pybi)的电荷转移跃迁. 这表明此类配合物的吸收和发射主要受前线分子轨道的金属成分控制, 同时也受辅助配体L的影响.  相似文献   

13.
The preparation, photophysics, and solid state structures of octahedral organometallic Ir complexes with several different cyclometalated ligands are reported. IrCl3.nH2O cleanly cyclometalates a number of different compounds (i.e., 2-phenylpyridine, 2-(p-tolyl)pyridine, benzoquinoline, 2-phenylbenzothiazole, 2-(1-naphthyl)benzothiazole, and 2-phenylquinoline), forming the corresponding chloride-bridged dimers, CwedgeN2Ir(mu-Cl)2IrCwedgeN2 (CwedgeNis a cyclometalated ligand) in good yield. These chloride-bridged dimers react with acetyl acetone (acacH) and other bidentate, monoanionic ligands such as picolinic acid (picH) and N-methylsalicylimine (salH), to give monomeric CwedgeN2Ir(LX) complexes (LX = acac, pic, sal). The emission spectra of these complexes are largely governed by the nature of the cyclometalating ligand, leading to lambda(max) values from 510 to 606 nm for the complexes reported here. The strong spin-orbit coupling of iridium mixes the formally forbidden 3MLCT and 3pi-pi* transitions with the allowed 1MLCT, leading to a strong phosphorescence with good quantum efficiencies (0.1-0.4) and room temperature lifetimes in the microsecond regime. The emission spectra of the CwedgeN2Ir(LX) complexes are surprisingly similar to the fac-IrCwedgeN3 complex of the same ligand, even though the structures of the two complexes are markedly different. The crystal structures of two of the CwedgeN2Ir(acac) complexes (i.e., CwedgeN = ppy and tpy) have been determined. Both complexes show cis-C,C', trans-N,N' disposition of the two cyclometalated ligands, similar to the structures reported for other complexes with a "CwedgeN2Ir" fragment. NMR data (1H and 13C) support a similar structure for all of the CwedgeN2Ir(LX) complexes. Close intermolecular contacts in both (ppy)2Ir(acac) and (tpy)2Ir(acac) lead to significantly red shifted emission spectra for crystalline samples of the ppy and tpy complexes relative to their solution spectra.  相似文献   

14.
The synthesis and photophysical study of a family of cyclometalated iridium(III) complexes are reported. The iridium complexes have two cyclometalated (C(**)N) ligands and a single monoanionic, bidentate ancillary ligand (LX), i.e., C(**)N2Ir(LX). The C(**)N ligands can be any of a wide variety of organometallic ligands. The LX ligands used for this study were all beta-diketonates, with the major emphasis placed on acetylacetonate (acac) complexes. The majority of the C(**)N2Ir(acac) complexes phosphoresce with high quantum efficiencies (solution quantum yields, 0.1-0.6), and microsecond lifetimes (e.g., 1-14 micros). The strongly allowed phosphorescence in these complexes is the result of significant spin-orbit coupling of the Ir center. The lowest energy (emissive) excited state in these C(**)N2Ir(acac) complexes is a mixture of (3)MLCT and (3)(pi-pi) states. By choosing the appropriate C(**)N ligand, C(**)N2Ir(acac) complexes can be prepared which emit in any color from green to red. Simple, systematic changes in the C(**)N ligands, which lead to bathochromic shifts of the free ligands, lead to similar bathochromic shifts in the Ir complexes of the same ligands, consistent with "C(**)N2Ir"-centered emission. Three of the C(**)N2Ir(acac) complexes were used as dopants for organic light emitting diodes (OLEDs). The three Ir complexes, i.e., bis(2-phenylpyridinato-N,C2')iridium(acetylacetonate) [ppy2Ir(acac)], bis(2-phenyl benzothiozolato-N,C2')iridium(acetylacetonate) [bt2Ir(acac)], and bis(2-(2'-benzothienyl)pyridinato-N,C3')iridium(acetylacetonate) [btp2Ir(acac)], were doped into the emissive region of multilayer, vapor-deposited OLEDs. The ppy2Ir(acac)-, bt2Ir(acac)-, and btp2Ir(acac)-based OLEDs give green, yellow, and red electroluminescence, respectively, with very similar current-voltage characteristics. The OLEDs give high external quantum efficiencies, ranging from 6 to 12.3%, with the ppy2Ir(acac) giving the highest efficiency (12.3%, 38 lm/W, >50 Cd/A). The btp2Ir(acac)-based device gives saturated red emission with a quantum efficiency of 6.5% and a luminance efficiency of 2.2 lm/W. These C(**)N2Ir(acac)-doped OLEDs show some of the highest efficiencies reported for organic light emitting diodes. The high efficiencies result from efficient trapping and radiative relaxation of the singlet and triplet excitons formed in the electroluminescent process.  相似文献   

15.
Investigations of blue phosphorescent organic light emitting diodes (OLEDs) based on [Ir(2-(2,4-difluorophenyl)pyridine)(2)(picolinate)] (FIrPic) have pointed to the cleavage of the picolinate as a possible reason for device instability. We reproduced the loss of picolinate and acetylacetonate ancillary ligands in solution by the addition of Br?nsted or Lewis acids. When hydrochloric acid is added to a solution of a [Ir(C^N)(2)(X^O)] complex (C^N = 2-phenylpyridine (ppy) or 2-(2,4-difluorophenyl)pyridine (diFppy) and X^O = picolinate (pic) or acetylacetonate (acac)), the cleavage of the ancillary ligand results in the direct formation of the chloro-bridged iridium(III) dimer [{Ir(C^N)(2)(μ-Cl)}(2)]. When triflic acid or boron trifluoride are used, a source of chloride (here tetrabutylammonium chloride) is added to obtain the same chloro-bridged iridium(III) dimer. Then, we advantageously used this degradation reaction for the efficient synthesis of tris-heteroleptic cyclometalated iridium(III) complexes [Ir(C^N(1))(C^N(2))(L)], a family of cyclometalated complexes otherwise challenging to prepare. We used an iridium(I) complex, [{Ir(COD)(μ-Cl)}(2)], and a stoichiometric amount of two different C^N ligands (C^N(1) = ppy; C^N(2) = diFppy) as starting materials for the swift preparation of the chloro-bridged iridium(III) dimers. After reacting the mixture with acetylacetonate and subsequent purification, the tris-heteroleptic complex [Ir(ppy)(diFppy)(acac)] could be isolated with good yield from the crude containing as well the bis-heteroleptic complexes [Ir(ppy)(2)(acac)] and [Ir(diFppy)(2)(acac)]. Reaction of the tris-heteroleptic acac complex with hydrochloric acid gives pure heteroleptic chloro-bridged iridium dimer [{Ir(ppy)(diFppy)(μ-Cl)}(2)], which can be used as starting material for the preparation of a new tris-heteroleptic iridium(III) complex based on these two C^N ligands. Finally, we use DFT/LR-TDDFT to rationalize the impact of the two different C^N ligands on the observed photophysical and electrochemical properties.  相似文献   

16.
A series of iridium complexes ( 1 – 5 ), which consist of two 2‐(2,4‐difluorophenyl)pyridine (dfppy)‐based primary ligands and one pyridinylphosphinate ancillary ligand, have been investigated theoretically for screening highly efficient deep‐blue light‐emitting materials. Compared with the reported dfppy‐based emitter 1 , the designed iridium complexes 3 – 5 with the introduction of a stronger electron‐withdrawing (–CN, –CF3 , or o‐carborane) group and a bulky electron‐donating (tert‐butyl) group in dfppy ligands can be achieved to display the emission peaks at 443, 442, and 447 nm, respectively. The electronic structures, absorption and emission properties, radiative and nonradiative processes of their excited states, and charge injection and transport properties of the iridium complexes are analyzed in detail. The calculated results show that designed iridium complexes have comparable radiative and nonradiative rate constants with 1 , and are expected to have similar quantum efficiency with 1 . Meanwhile, these designed complexes keep the advantages of the charge transport properties of 1 , indicating that they are potential iridium complexes for efficient deep‐blue phosphorescence. This work provides more in‐depth understanding the structure–property relationship of dfppy‐based iridium complexes, and shed lights on molecular design for deep‐blue phosphorescent metal complexes.  相似文献   

17.
We report the singlet oxygen sensitization properties of a series of bis-cyclometalated Ir(III) complexes (i.e., (bt)2Ir(acac), (bsn)2Ir(acac), and (pq)2Ir(acac); bt = 2-phenylbenzothiazole, bsn = 2-(1-naphthyl)benzothiazole, pq = 2-phenylquinoline, and acac = acetylacetonate). Complexes with acetylacetonate ancillary ligands give singlet oxygen quantum yields near unity (PhiDelta = (0.7-1.0) +/- 0.1), whether exciting the ligand-based state or the lowest energy excited state (MLCT + 3LC). The singlet oxygen quenching rates for these beta-diketonate complexes were found to be small [(5 +/- 2) x 105 to (6 +/- 0.2) x 106 M-1 s-1], roughly 3 orders of magnitude slower than the corresponding phosphorescence quenching rate. Similar complexes were prepared with glycine or pyridine tethered to the Ir(III) center (i.e., (bsn)2Ir(gly) and (bt)2Ir(py)Cl; gly = glycine and py = pyridine). The glycine and pyridine derivatives give high singlet oxygen yields (PhiDelta = (0.7-1.0) +/- 0.1).  相似文献   

18.
Two new iridium complexes, (dfppy)2Ir(L-alanine) (dfppy=2-(2,4-difluorophenyl)pyridine) and (piq)2Ir(L-alanine) (piq=L-phenylisoquinoline) were prepared with L-alanine as ancillary ligand. The two complexes show bright greenish-blue and red emission respectively. Theoretic study demonstrated that the emission nature of these complexes is mainly determined by the main ligand. And their improved aqueous solubility and the retained quantum yield favor their application in cell imaging. Intracellular imaging suggested that these two complexes have fine cell membrane permeability and is mainly distributed in cytoplasm. This study displayed a new strategy to design aqueous soluble phosphorescent cyclometallated Ir(Ⅲ) complex via introducing amino acid as ancillary ligand.  相似文献   

19.
We investigated the effect of an ancillary ligand (AL) on the emission color and luminous efficiencies of its complex, Ir(4-Me-2,3-dpq)2(AL), where 4-Me-2,3-dpq represents 4-methyl-2,3-diphenylquinolinato ligand. We expected that ancillary ligand modification by introduction of the bulky substituent to the complexes might allow luminous efficiency increase by reduction of T–T annihilation. Furthermore, some ancillary ligands may contribute to fine-tuning of their complex emission colors by influencing the energy level of Ir d-orbitals upon the orbital mixing. As new ancillary ligands substituting for acac which is a typical AL in the iridium complexes, pyrazolone-based ligands, 4-R-5-methyl-2-phenyl-2,4-dihydro-pyrazol-3-one series (przl-R), were prepared, where R represents C6H5, C6H4CH3 and C6H4Cl. These ligands were chelated to the iridium center to yield a new series of the iridium complexes, Ir(4-Me-2,3-dpq)2(przl-R). The X-ray crystal structure of Ir(4-Me-2,3-dpq)2(przl-C6H4Cl) was determined. The electrochemical and luminescence properties of the iridium complexes were investigated. The effect of the przl-substituents on the emission colors of the complexes was not significant. On the other hand, the luminous efficiencies of Ir(4-Me-2,3-dpq)2(przl-C6H5) and Ir(4-Me-2,3-dpq)2(przl-C6H4CH3) were higher than that of Ir(4-Me-2,3-dpq)2(acac).  相似文献   

20.
Saito K  Nakao Y  Sakaki S 《Inorganic chemistry》2008,47(10):4329-4337
Four kinds of 3,5-dialkylpyrazolate(R2pz)-bridged dinuclear platinum(II) complexes [Pt2(mu-R2pz)2(dfppy)2] (dfppy=2-(2,4-difluorophenyl)pyridine; R2pz=pyrazolate in 1, 3,5-dimethylpyrazolate in 2, 3-methyl-5- tert-butylpyrazolate in 3, and 3,5-bis(tert-butyl)pyrazolate in 4) were theoretically investigated by the DFT(B3PW91) method. The Stokes shift of their phosphorescence spectra was discussed on the basis of the potential energy curve (PEC) of the lowest energy triplet excited state (T1). This PEC significantly depends on the bulkiness of substituents on pz. In 1 and 2, bearing small substituents on pz, one local minimum is present in the T1 state besides a global minimum. The local minimum geometry is similar to the S0-equilibrium one. The T1 state at this local minimum is characterized as the pi-pi* excited state in dfppy, where the dpi orbital of Pt participates in this excited state through an antibonding interaction with the pi orbital of dfppy; in other words, this triplet excited state is assigned as the mixture of the ligand-centered pi-pi* excited and metal-to-ligand charge transfer excited state ((3)LC/MLCT). The geometry of the T1-global minimum is considerably different from the S0-equilibrium one. The T1 state at the global minimum is characterized as the triplet metal-metal-to-ligand charge transfer ((3)MMLCT) excited state, which is formed by the one-electron excitation from the dsigma-dsigma antibonding orbital to the pi* orbital of dfppy. Because of the presence of the local minimum, the geometry change in the T1 state is suppressed in polystyrene at room temperature (RT) and frozen 2-methyltetrahydrofuran (2-MeTHF) at 77 K. As a result, the energy of phosphorescence is almost the same in these solvents. In fluid 2-MeTHF at RT, on the other hand, the geometry of the T1 state easily reaches the T1-global minimum. Because the T1-global minimum geometry is considerably different from the S0-equilibrium one, the phosphorescence occurs at considerably low energy. These are the reasons why the Stokes shift is very large in fluid 2-MeTHF but small in polystyrene and frozen 2-MeTHF. In 3 and 4, bearing bulky tert-butyl substituents on pz, only the T1-global minimum is present but the local minimum is not. The electronic structure of this T1-global minimum is assigned as the (3)MMLCT excited state like 1 and 2. Though frozen 2-MeTHF suppresses the geometry change of 3 and 4 in the T1 state, their geometries moderately change in polystyrene because of the absence of the T1-local minimum. As a result, the energy of phosphorescence is moderately lower in polystyrene than in frozen 2-MeTHF. The T1-global minimum geometry is much different from the S0-equilibrium one in 3 but moderately different in 4, which is interpreted in terms of the symmetries of these complexes and the steric repulsion between the tert-butyl group on pz and dfppy. Thus, the energy of phosphorescence of 3 is much lower in fluid 2-MeTHF than in frozen 2-MeTHF like 1 and 2 but that of 4 is moderately lower; in other words, the Stokes shift in fluid 2-MeTHF is small only in 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号