首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
毛细管柱固相微萃取-气相色谱法联用测定水中有机物   总被引:4,自引:0,他引:4  
田星  王涵文  刘文民  关亚风 《分析化学》2004,32(8):1023-1026
毛细管柱固相微萃取方法利用一根约30-50cm毛细管短柱作为萃取柱,萃取时让一定体积的水样品流经萃取柱,对水中的有机物进行动态萃取吸附,再利用玻璃压接头将萃取柱作为“预柱”和置于气相色谱炉箱内的分析柱迅速连接,随后通过程序升温完成萃取柱中萃取组分的脱附和快速分析。实验了饮用水中烃类和有机萘的萃取和分析,并对该方法进行了考察,结果表明:该方法有着高效富集、简单快速、背景噪音小、费用低等优点。对有机萘的最小检出量为0.5μg/L;相对标准偏差RSD=2%。  相似文献   

2.
固相微萃取-气相色谱-质谱联用测定水中酚类化合物   总被引:13,自引:0,他引:13  
赵汝松  柳仁民  崔庆新 《分析化学》2002,30(10):1240-1242
建立了固相微萃取与气相色谱-质谱联用技术(SPME-GC-MS)测定水中酚类化合物的新方法,探讨了萃取时间、搅拌速度、离子强度、pH值和解吸时间等条件对萃取量的影响。结果表明:65μm PDMS/DVB涂层对水中的酚类化合物有较好的萃取效果,用于水中酚类化合物的测定,结果满意。  相似文献   

3.
固相微萃取-气相色谱法分析水中痕量1-萘酚   总被引:3,自引:1,他引:3  
利用固相微萃取(SPME)-气相色谱法(GC)分析了水中前量的1-萘酚。对于SPME萃取头,溶液介质条件、吸附和解吸时间进行了研究。结果表明,PA_85萃取头对于水中1-萘酚的富集效果最佳。而无机盐氯化钠的加入和降低PH值可以明显地改善萃取效果。在优化后的条件下,SPME-GC方法对于水中1-萘酚的检测限可达0.5μg/L,分析过程中标准偏差均小于4%。  相似文献   

4.
固相萃取-气相色谱法测定水中毒死蜱   总被引:1,自引:0,他引:1  
水样中的毒死蜱经全自动固相萃取仪萃取、乙酸乙酯洗脱后,用气相色谱火焰光度检测法测定,以保留时间定性,外标法定量.结果表明:选用ENVI-18小柱萃取、乙酸乙酯洗脱,在2mL/min的过水速率下取得了良好的回收率.方法的线性范围为0.25~4.0mg/L.r为0.9998,回收率为88.6%~100.6%,相对标准偏差为2.58%~7.34%,最低定量浓度为2.5μg/L.本方法快速、灵敏、准确,并能够很好的排除干扰,可以满足水中痕量毒死蜱的测定.  相似文献   

5.
提出了顶空固相微萃取-气相色谱法测定水中四乙基铅含量的方法。为使固相微萃取达到更高的效率,选用聚二甲基硅氧烷填料(PDMS)作为微萃取的涂层,萃取温度及时间为60℃和30min。用DB-5色谱柱分离,用电子捕获检测器检测。四乙基铅的质量浓度在0.05~20.0μg·L-1范围内与峰面积呈线性关系,方法的检出限(3S/N)为0.02μg·L-1。以水样为基体,在3种浓度水平下进行加标回收试验,回收率在87.0%~90.1%之间,测定值的相对标准偏差(n=7)在3.7%~4.2%之间。  相似文献   

6.
固相微萃取-气相色谱法测定水中的甲基膦酸   总被引:6,自引:1,他引:5  
报道了应用固相微萃取-气相色谱法测定水中甲基磷酸的方法,研究了不同固相微萃取纤维、萃取温度和时间、解吸时间、pH值等萃取条件和衍生化温度和时间、衍生化程序等衍生条件对测定效果的影响;结果表明该法简便、快速、有效,其检出限为0.03mg/L。  相似文献   

7.
固相微萃取-气相色谱法测定水中有机磷农药   总被引:1,自引:0,他引:1  
提出了固相微萃取样品-气相色谱法测定水中6种有机磷农药残留量的方法。为使固相微萃取达到更高的效率,选择65μm的聚二甲基硅氧烷/二乙烯苯(PDMS/DVB)萃取头,萃取温度及时间为80℃和20 min,在10 mL试样中加入氯化钠1.5 g作为盐析剂。用HP-5毛细管色谱柱分离,电子捕获检测器检测。6种有机磷农药的质量浓度均在1.0~50.0μg·L-1范围内与其峰面积呈线性关系,方法的检出限(3S/N)在0.026~0.064μg·L-1之间。方法用于水样分析,测定值的相对标准偏差(n=6)在3.0~5.6%之间,加标回收率在86.2%~115.7%之间。  相似文献   

8.
固相微萃取气相色谱法(SPME-GC)测定水体中邻苯二甲酸酯   总被引:9,自引:0,他引:9  
选用85μm PA纤维,考证了萃取温度、萃取时间、搅拌、离子强度及解析时间等影响因素,最后确立了65℃萃取温度、60min萃取时间、稳定的磁力搅拌、5min解析时间、用带电子捕获检测器的毛细管气相色谱(CGC—ECD)分离测定、外标标准曲线法定量分析水体中邻苯二甲酸酯(PAEs)的方法。该方法具有较好的精密度(RSD≤16%)和较低的检出限(DLDBP=0.003μg/L,DLDEDEHP=0.05μg/L),水样加标回收率在70%~130%之间。用该法测定了长江水样、太湖水样、自来水及蒸馏水的PAEs含量,DBP在0.1~0.4μg/L,DEHP在0.2~1.2μg/L,DMP、DEP、DOP均未检测到。  相似文献   

9.
自动顶空固相微萃取气相色谱法同步分析水中17种有机物   总被引:2,自引:0,他引:2  
采用自动顶空固相微萃取(HS-SPME)技术与气相色谱联用同步分析水中1,4-二氯苯、1,2-二氯苯、1,3,5-三氯苯、1,2,4-三氯苯、1,2,3-三氯苯、六氯苯、硝基苯、对硝基甲苯、α-666、β-666、γ-666、δ-666、七氯、ρ,ρ′-DDE、ρ,ρ′-DDD、o,ρ′-DDT、ρ,ρ′-DDT17种有机物。方法的最低检出浓度为0.001~0.044μg/L,线性相关系数均大于0.999,相对标准偏差为1.4%~8.7%,加标回收率在81.3%~122.9%之间。  相似文献   

10.
毛细管固相微萃取-液相色谱法测定水中的多环芳烃   总被引:8,自引:0,他引:8  
建立了一种新的水环境样品项处理方法。将水相中目标污染物萃取至毛细管固定相中,经微量有机溶剂解吸,直接在高效液相色谱上进样分析。该方法对蒽、荧蒽和1,2—苯并蒽3种多环芳烃的检测限分别为0.9μg/L,0.7μg/L和0.1μg/L。相对标准偏差5.1%-6.3%(n=7)。  相似文献   

11.
An online device is described in which analytes are extracted from a liquid sample by means of in-tube solid-phase microextraction (in-tube SPME), pulse released by rapid heating, and transferred to a gas chromatograph in a fully automated way. Switching of the sample and gas flows as well as the heating of the extraction tube and the valves is controlled by a remote computer system. Results obtained for river water and for aqueous standard solutions of phenanthrene are presented and are compared to the performance of standard SPME.  相似文献   

12.
A simple, rapid, and sensitive method using in-tube solid-phase microextraction (in-tube SPME) based on poly(methacrylic acid–ethylene glycol dimethacrylate) (MAA–EGDMA) monolith coupled to HPLC with fluorescence and UV detection was developed for the determination of five fluoroquinolones (FQs). Ofloxacin (OFL), norfloxacin (NOR), ciprofloxacin (CIP), enrofloxacin (ENRO), and sarafloxacin (SARA) can be enriched and determined in the spiked eggs and albumins. CIP/ENRO in eggs and albumins of ENRO-treated hens were also studied using the proposed method. Only homogenization, dilution, and centrifugation were required before the sample was supplied to the in-tube microextraction, and no organic solvents were consumed in the procedures. Under the optimized extraction conditions, good extraction efficiency for the five FQs was obtained with no matrix interference in the process of extraction and the subsequent chromatographic separation. The detection limits (S/N=3) were found to be 0.1–2.6 ng g−1 and 0.2–2.4 ng g−1 in whole egg and egg albumin, respectively. Good linearity could be achieved over the range 2–500 ng mL−1 for the five FQs with regression coefficients above 0.9995 in both whole egg and albumin. The reproducibility of the method was evaluated at three concentration levels, with the resulting relative standard deviations (RSDs) less than 7%. The method was successfully applied to the analysis of ENRO and its primary metabolite CIP in the eggs and albumins of ENRO-treated hens.  相似文献   

13.
The performance of a monolithic C(18) column (150 mm×0.2 mm i.d.) for multiresidue organic pollutants analysis by in-tube solid-phase microextraction (IT-SPME)-capillary liquid chromatography has been studied, and the results have been compared with those obtained using a particulate C(18) column (150 mm×0.5 mm i.d., 5 μm). Chromatographic separation has been carried out under isocratic elution conditions, and for detection and identification of the analytes a UV-diode array detector has been employed. Several compounds of different chemical structure and hydrophobicity have been used as model compounds: simazine, atrazine and terbutylazine (triazines), chlorfenvinphos and chlorpyrifos (organophosphorous), diuron and isoproturon (phenylureas), trifluralin (dinitroaniline) and di(2-ethylhexyl)phthalate. The results obtained revealed that the monolithic column was clearly advantageous in the context of multiresidue organic pollutants analysis for a number of reasons: (i) the selectivity was considerably improved, which is of particular interest for the most polar compounds triazines and phenyl ureas that could not be resolved in the particulate column, (ii) the sensitivity was enhanced, and (iii) the time required for the chromatographic separation was substantially shortened. In this study it is also proved that the mobile-phase flow rates used for separation in the capillary monolithic column are compatible with the in-valve IT-SPME methodology using extractive capillaries of dimensions similar to those used in conventional scale liquid chromatography (LC). On the basis of these results a new method is presented for the assessment of pollutants in waters, which permits the characterization of whole samples (4 mL) in less than 30 min, with limits of detection in the range of 5-50 ng/L.  相似文献   

14.
A sensitive, selective, and reproducible in-tube polypyrrole-coated capillary (PPY) solid-phase microextraction and liquid chromatographic method for fluoxetine and norfluoxetine enantiomers analysis in plasma samples has been developed, validated, and further applied to the analysis of plasma samples from elderly patients undergoing therapy with antidepressants. Important factors in the optimization of in-tube SPME efficiency are discussed, including the sample draw/eject volume, draw/eject cycle number, draw/eject flow-rate, sample pH, and influence of plasma proteins. Separation of the analytes was achieved with a Chiralcel OD-R column and a mobile phase consisting of potassium hexafluorophosphate 7.5 mM and sodium phosphate 0.25 M solution, pH 3.0, and acetonitrile (75:25, v/v) in the isocratic mode, at a flow rate of 1.0 mL/min. Detection was carried out by fluorescence absorbance at Ex/Em 230/290 nm. The multifunctional porous surface structure of the PPY-coated film provided high precision and accuracy for enantiomers. Compared with other commercial capillaries, PPY-coated capillary showed better extraction efficiency for all the analytes. The quantification limits of the proposed method were 10 ng/mL for R- and S-fluoxetine, and 15 ng/mL for R- and S-norfluoxetine, with a coefficient of variation lower than 13%. The response of the method for enantiomers is linear over a dynamic range, from the limit of quantification to 700 ng/mL, with correlation coefficients higher than 0.9940. The in-tube SPME/LC method can therefore be successfully used to analyze plasma samples from ageing patients undergoing therapy with fluoxetine.  相似文献   

15.
We developed a sensitive and useful method for the determination of five fluoroquinolones (FQs), enoxacin, ofloxacin, ciprofloxacin, norfloxacin, and lomefloxacin in environmental waters, using a fully automated method consisting of in-tube solid-phase microextraction (SPME) coupled with liquid chromatography-tandem mass spectrometry (LC/MS/MS). These compounds were analysed within 7 min by high-performance liquid chromatography (HPLC) using a CAPCELL PAK C8 column and aqueous ammonium formate (pH 3.0, 5 mM)/acetonitrile (85/15, v/v) at a flow rate of 0.2 mL/min. Electrospray ionization conditions in the positive ion mode were optimized for MS/MS detection. In order to optimize the extraction of FQs, several in-tube SPME parameters were examined. The optimum in-tube SPME conditions were 20 draw/eject cycles of 40 μL of sample at a flow-rate of 150 μL/min, using a Carboxen 1010 PLOT capillary column as an extraction device. The extracted compounds were easily desorbed from the capillary by passage of the mobile phase. Using the in-tube SPME LC/MS/MS method, good linearity of the calibration curve (r ≥ 0.997) was obtained in the concentration range from 0.1 to 10 ng/mL for all compounds examined. The limits of detection (S/N = 3) of the five FQs ranged from 7 to 29 pg/mL. The in-tube SPME method showed 60-94-fold higher sensitivity than the direct injection method (5 μL injection). This method was applied successfully to the analysis of environmental water samples without any other pretreatment and interference peaks. Several surface waters and wastewaters were collected from the area around Asahi River, and ofloxacin was detected in wastewater samples of a sewage treatment plant and other two hospitals at 17.5-186.2 pg/mL. The recoveries of FQs spiked into river water were above 81% for a 0.1 or 0.2 ng/mL spiking concentration, and the relative standard deviations were below 1.9-8.6%.  相似文献   

16.
A simple, rapid and sensitive method for the determination of five estrogens, estrone, 17beta-estradiol, estriol, ethynyl estradiol, and diethylstilbestrol, was developed using a fully automated method consisting of in-tube solid-phase microextraction (SPME) coupled with liquid chromatography-tandem mass spectrometry (LC/MS/MS). These estrogens were separated within 8 min by HPLC using an XDB-C8 column and 0.01% ammonia/acetonitrile (60/40, v/v) at a flow rate of 0.2 mL/min. Electrospray ionization conditions in the negative ion mode were optimized for MS/MS detection of the estrogens. The optimum in-tube SPME conditions were 20 draw/eject cycles of 40 microL of sample using a Supel-Q PLOT capillary column as an extraction device. The extracted compounds were easily desorbed from the capillary by passage of the mobile phase, and no carryover was observed. Using the in-tube SPME LC/MS/MS method, good linearity of the calibration curve (r > or = 0.9996) was obtained in the concentration range from 10 to 200 pg/mL for all compounds examined. The limits of detection (S/N= 3) of the five estrogens examined ranged from 2.7 to 11.7 pg/mL. The in-tube SPME method showed 34-90-fold higher sensitivity than the direct injection method (5 microL injection). This method was applied successfully to the analysis of environmental water samples without any other pretreatment and interference peaks. Several surface water and wastewater samples were collected from the area around Asahi River, and estriol was detected at 35.7 pg/mL in the effluent of a sewage treatment plant. The recoveries of estrogens spiked into river waters were above 86%, except for estriol, and the relative standard deviations were below 0.9-8.8%.  相似文献   

17.
We have developed a simple, rapid, and sensitive method for the determination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) by on-line in-tube solid-phase microextraction (SPME) coupled with liquid chromatography-mass spectrometry (LC-MS). PFOA and PFOS were separated within 10 min by high-performance liquid chromatography using an Inertsil ODS-3 column and 10 mM ammonium acetate/methanol (35/65, v/v) as a mobile phase at a flow rate of 0.25 mL min−1. Electrospray ionization conditions in the negative ion mode were optimized for MS detection of PFOA and PFOS. The optimum in-tube SPME conditions were 20 draw/eject cycles with a sample size of 40 μL using a CP-Pora PLOT amine capillary column as the extraction device. The extracted compounds could be desorbed easily from the capillary by passage of the mobile phase, and no carryover was observed. Using the in-tube SPME LC-MS method, good linearity of the calibration curve (r = 0.9990 for PFOA, r = 0.9982 for PFOS) was obtained in the range of 0.05-5 ng mL−1 each compound. The detection limits (S/N = 3) for PFOA and PFOS were 1.5 and 3.2 pg mL−1, respectively. The method described here showed about 100-fold higher sensitivity than the direct injection method. The within-day and between-day precisions (relative standard deviations) were below 3.7 and 6.0%, respectively. This method was applied successfully to the analysis of PFOA and PFOS in environmental water samples and to the elution test from a Teflon®-coated frying pan without interference peaks. The recoveries of PFOA and PFOS spiked into river samples were above 81%, and PFOA was detected at pg mL−1 levels in environmental water samples and eluate from the frying pan.  相似文献   

18.
Summary A study of different extraction techniques for the determination of a selected group of organochlorine compounds in surface waters is presented. Comparison of liquid-liquid extraction (LLE) with solid-phase extraction (SPE) and solid-phase microextraction (SPME) with fibers of different polarity shows that SPME with a recently commercialised fiber of polydimethylsiloxane divinylbenzene allows these compounds to be determined in surface waters with good extraction efficiencies. Extraction time, effect of temperature, ionic strength and pH were optimised, allowing quantification in agricultural effluents in the range 1.0–60 ng·L−1.  相似文献   

19.
A silica nanoparticle (NP)-deposited capillary fabricated by liquid-phase deposition (LPD) and modified with octadecyl groups was introduced for in-tube solid-phase microextraction coupled to high-performance liquid chromatography with UV detection (in-tube SPME–HPLC). The resultant capillary (60 cm × 50 μm I.D.) was demonstrated to be of higher extraction capacity by comparing with an octadecyl-grafted bare capillary and an octadecyl-grafted silica-coated capillary that was prepared by sol–gel chemistry. Two groups of compounds, endocrine disruptors and polycyclic aromatic hydrocarbons, were used as model analytes to further evaluate extraction capacity of the silica NP-deposited capillary, and its reproducibility and stability was also investigated. The extraction time profiles were monitored for all the chemicals, and their limits of detection were calculated to be in the range of 0.42–0.78 and 0.034–0.19 ng/mL with RSD values of peak area less than 4.6%.  相似文献   

20.
单滴液相微萃取气相色谱测定水中的酞酸酯类化合物   总被引:1,自引:0,他引:1  
采用单滴液相微萃取与气相色谱测定水中的酞酸二甲酯(DMP)和酞酸二丁酯(DBP).考察了萃取溶剂、萃取时间及搅拌速度等因素对萃取结果的影响,确定最佳萃取条件为:3 mL水样放置于4 mL样品瓶中,以600 r/min速度进行磁力搅拌,萃取20 min.该方法对酞酸二甲酯和酞酸二丁酯的富集倍数为228和318,检出限为1.4和0.8 μg/L,相对标准偏差为9.4%和6.4%.对地表水、污水和海水的加标回收率DMP在94.5%~99.3%,DBP在87.0%~102%之间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号