首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Three organic-inorganic hybrid copper-lanthanide heterometallic germanotungstates, {[Cu(en)(2)(H(2)O)] [Cu(3)Eu(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·11H(2)O (1), {[Cu(en)(2)(H(2)O)][Cu(3)Tb(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·11H(2)O (2) and {[Cu(en)(2)(H(2)O)][Cu(3)Dy(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·10H(2)O (3) and three polyoxometalate hybrids built by lanthanide-containing germanotungstates and copper-ethylendiamine complexes, Na(2)H(6)[Cu(en)(2)(H(2)O)](8){Cu(en)(2)[La(α-GeW(11)O(39))(2)](2)}·18H(2)O (4), K(4)H(2)[Cu(en)(2)(H(2)O)(2)](5)[Cu(en)(2)(H(2)O)](2)[Cu(en)(2)](2){Cu(en)(2)[Pr(α-GeW(11)O(39))(2)](2)}·16H(2)O (5) and KNa(2)H(7)[enH(2)](3)[Cu(en)(2)(H(2)O)](2)[Cu(en)(2)](2){Cu(en)(2)[Er(α-GeW(11)O(39))(2)](2)}·15H(2)O (6) (en = ethylenediamine) have been hydrothermally synthesized and structurally characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP-AES) analyses, IR spectra, powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS) and single-crystal X-ray diffraction. 1-3 are essentially isomorphous and their main skeletons display the interesting dimeric motif {[Cu(3)Ln(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)(4-), which is constructed from two {Cu(3)LnO(4)} cubane anchored monovacant [α-GeW(11)O(39)](8-) fragments through two W-O-Ln-O-W linkers. The primary backbones of 4-6 exhibit the tetrameric architecture {Cu(en)(2)[Ln(α-GeW(11)O(39))(2)](2)}(24-) built by two 1?:?2-type [Ln(α-GeW(11)O(39))(2)](13-) moieties and one [Cu(en)(2)](2+) bridge, albeit they are not isostructural. To our knowledge, 1-6 are rare polyoxometalate derivatives consisting of copper-lanthanide heterometallic/lanthanide germanotungstate fragments. 1 exhibits antiferromagnetic coupling interactions within the {Cu(3)EuO(4)} cubane units, while 2 and 3 display dominant ferromagnetic interactions between the Tb(III)/Dy(III) and Cu(II) cations. The room-temperature solid-state photoluminescence properties of 1-3 have been investigated.  相似文献   

2.
Six Mo(IV)-Cu(II) complexes, [Cu(tpa)](2)[Mo(CN)(8)]·15H(2)O (1, tpa = tris(2-pyridylmethyl)amine), [Cu(tren)](2)[Mo(CN)(8)]·5.25H(2)O (2, tren = tris(2-aminoethyl)amine), [Cu(en)(2)][Cu(0.5)(en)][Cu(0.5)(en)(H(2)O)][Mo(CN)(8)]·4H(2)O (3, en = ethylenediamine), [Cu(bapa)](3)[Mo(CN)(8)](1.5)·12.5H(2)O (4, bapa = bis(3-aminopropyl)amine), [Cu(bapen)](2)[Mo(CN)(8)]·4H(2)O (5, bapen = N,N'-bis(3-aminopropyl)ethylenediamine), and [Cu(pn)(2)][Cu(pn)][Mo(CN)(8)]·3.5H(2)O (6, pn = 1,3-diaminopropane), were synthesized and characterized. Single-crystal X-ray diffraction analyses show that 1-6 have different structures varying from trinuclear clusters (1-2), a one-dimensional belt (3), two-dimensional grids (4-5), to a three-dimensional structure (6). Magnetic and ESR measurements suggest that 1-6 exhibit thermally reversible photoresponsive properties on UV light irradiation through a Mo(IV)-to-Cu(II) charge transfer mechanism. A trinuclear compound [Cu(II)(tpa)](2)[Mo(V)(CN)(8)](ClO(4)) (7) was synthesized as a model of the photoinduced intermediate.  相似文献   

3.
Four di-Cu(II)-substituted sandwich-type germanomolybdates, (H(2)en)(2)H(7){[Na(0.5)(H(2)O)(3.5)](2)[Cu(2)(β-Y-GeMo(9)O(33))(2)]}·6H(2)O (1), (H(2)en)(2)H{[Na(2.5)(H(2)O)(12)](2)[Cu(en)(2)][Cu(2)(β-Y-GeMo(9)O(33))(2)]}·8H(2)O (2), [Na(4)(H(2)O)(12)](2)H(4)[Cu(2)(β-Y-GeMo(9)O(33))(2)]}·11H(2)O (3) and [Cu(en)(2)](2)[Cu(en)(2)(H(2)O)](2){[Cu(en)(2)](2)[Cu(2)(β-Y-GeMo(9)O(33))(2)]}·8H(2)O (4) (en = ethylenediamine), have been prepared. It is interesting that 1-3 were obtained in the same aqueous solution reaction system but exhibited different structures: 1 displays a 0D structure, 2 shows an organic-inorganic 1D chain structure, while 3 displays a 2D network. 4 was synthesized under hydrothermal condition by the same reagents, which represents the first transition metal-sandwiched organic-inorganic 2D heteropolymolybdate.  相似文献   

4.
The oxomolybdenum-arsonate system was investigated under hydrothermal conditions in the presence of charge-compensating copper(II)-organonitrogen complex cations as secondary building blocks. A series of materials of the Mo/O/As/Cu/ligand family has been prepared and structurally characterized. The architectures of the products reflect the identity of the arsonate component and the organonitrogen ligand, as well as the reaction conditions. The structural versatility of this emerging class of compounds is manifested by the one-dimensional structures of [[Cu(o-phen)(H(2)O)(2)](2)Mo(6)O(18)(O(3)AsOH)(2)] (1), [[Cu(terpy)](2)Mo(4)O(13)H(AsO(4))(2)].2H(2)O (2.2H(2)O), [[Cu(2,2'-bpy)(H(2)O)](2)Mo(6)O(18)(O(3)AsC(6)H(5))(2)].2H(2)O (4.2H(2)O), and [[Cu(o-phen)(H(2)O)](2)[Mo(6)O(18)(O(3)AsC(6)H(5))(2)]].4H(2)O (5.4H(2)O), by the two-dimensional materials [[Cu(2)(tpyprz)(H(2)O)(2)]Mo(6)O(18)(O(3)AsOH)(2)].2H(2)O (3.2H(2)O), [[Cu(terpy)](2)Mo(6)O(18)(O(3)AsC(6)H(5))(2)].H(2)O (6.H(2)O), and [[Cu(2)(tpyprz)]Mo(6)O(18)(O(3)AsC(6)H(5))(2)].2H(2)O (7.2H(2)O), and the molecular clusters [[Cu(2,2'-bpy)(2)](2)Mo(12)O(34)(O(3)AsC(6)H(5))(4)].2.35H(2)O (8.2.35H(2)O) and [Cu(o-phen)(H(2)O)(3)][Cu(o-phen)(2)Mo(12)O(34) (O(3)AsC(6)H(5))(4)].3H(2)O (9.3H(2)O).  相似文献   

5.
The Mo(3)SnS(4)(6+) single cube is obtained by direct addition of Sn(2+) to [Mo(3)S(4)(H(2)O)(9)](4+). UV-vis spectra of the product (0.13 mM) in 2.00 M HClO(4), Hpts, and HCl indicate a marked affinity of the Sn for Cl(-), with formation of the more strongly yellow [Mo(3)(SnCl(3))S(4)(H(2)O)(9)](3+) complex complete in as little as 0.050 M Cl(-). The X-ray crystal structure of (Me(2)NH(2))(6)[Mo(3)(SnCl(3))S(4)(NCS)(9)].0.5H(2)O has been determined and gives Mo-Mo (mean 2.730 ?) and Mo-Sn (mean 3.732 ?) distances, with a difference close to 1 ?. The red-purple double cube cation [Mo(6)SnS(8)(H(2)O)(18)](8+) is obtained by reacting Sn metal with [Mo(3)S(4)(H(2)O)(9)](4+). The double cube is also obtained in approximately 50% yield by BH(4)(-) reduction of a 1:1 mixture of [Mo(3)SnS(4)(H(2)O)(10)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+). Conversely two-electron oxidation of [Mo(6)SnS(8)(H(2)O)(18)](8+) with [Co(dipic)(2)](-) or [Fe(H(2)O(6)](3+) gives the single cube [Mo(3)SnS(4)(H(2)O)(12)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+) (up to 70% yield), followed by further two-electron oxidation to [Mo(3)S(4)(H(2)O)(9)](4+) and Sn(IV). The kinetics of the first stages have been studied using the stopped-flow method and give rate laws first order in [Mo(6)SnS(8)(H(2)O)(18)](8+) and the Co(III) or Fe(III) oxidant. The oxidation with [Co(dipic)(2)](-) has no [H(+)] dependence, [H(+)] = 0.50-2.00 M. With Fe(III) as oxidant, reaction steps involving [Fe(H(2)O)(6)](3+) and [Fe(H(2)O)(5)OH](2+) are implicated. At 25 degrees C and I = 2.00 M (Li(pts)) k(Co) is 14.9 M(-)(1) s(-)(1) and k(a) for the reaction of [Fe(H(2)O)(6)](3+) is 0.68 M(-)(1) s(-)(1) (both outer-sphere reactions). Reaction of Cu(2+) with the double but not the single cube is observed, yielding [Mo(3)CuS(4)(H(2)O)(10)](5+). A redox-controlled mechanism involving intermediate formation of Cu(+) and [Mo(3)S(4)(H(2)O)(9)](4+) accounts for the changes observed.  相似文献   

6.
The evolution of nickel speciation during the successive preparation steps of Ni-SiO(2) catalysts is studied by UV-Vis-NIR, FT-IR, DTG, TPR and TEM. The study focuses on the effect of the number of chelating ligands in the precursor complexes [Ni(en)(x)(H(2)O)((6-2x))](2+) (en = ethylenediamine, x = 1, 2, 3) on the adsorption on silica, and on nickel speciation after thermal treatment. When the en:Ni ratio in solution increases from 1 to 3, the most abundant complex is [Ni(en)(H(2)O)(4)](2+) (64% of all Ni complexes), [Ni(en)(2)(H(2)O)(2)](2+) (81%) and [Ni(en)(3)](2+) (61%), respectively. Equilibrium adsorption of [Ni(en)(x)(H(2)O)((6-2x))](2+) on SiO(2) results in the selective grafting of [Ni(en)(H(2)O)(4)](2+) and [Ni(en)(2)(H(2)O)(2)](2+), through the substitution of two labile H(2)O ligands by two surface SiO(-) groups. The surface [Ni(en)(H(2)O)(2)(SiO)(2)] complex formed by the grafting of [Ni(en)(H(2)O)(4)](2+) onto silica tends to transform into NiO and nickel phyllosilicate after calcination, which consequently leads to large and heterogeneously distributed metallic Ni particles upon reduction. In contrast, [Ni(en)(2)(SiO)(2)], resulting from the grafting of [Ni(en)(2)(H(2)O)(2)](2+) onto silica, no longer has aqua ligands able to react with other nickel complexes or silicium-containing species. Calcination transforms these complexes into isolated Ni(2+) ions, which are reduced into small metallic Ni particles with a more homogeneous size distribution, even at higher Ni loading.  相似文献   

7.
In the reaction of organic monocationic chlorides or coordinatively saturated metal-ligand complex chlorides with linear, neutral Hg(CN)(2) building blocks, the Lewis-acidic Hg(CN)(2) moieties accept the chloride ligands to form mercury cyanide/chloride double salt anions that in several cases form infinite 1-D and 2-D arrays. Thus, [PPN][Hg(CN)(2)Cl].H(2)O (1), [(n)Bu(4)N][Hg(CN)(2)Cl].0.5 H(2)O (2), and [Ni(terpy)(2)][Hg(CN)(2)Cl](2) (4) contain [Hg(CN)(2)Cl](2)(2-) anionic dimers ([PPN]Cl = bis(triphenylphosphoranylidene)ammonium chloride, [(n)Bu(4)N]Cl = tetrabutylammonium chloride, terpy = 2,2':6',6' '-terpyridine). [Cu(en)(2)][Hg(CN)(2)Cl](2) (5) is composed of alternating 1-D chloride-bridged [Hg(CN)(2)Cl](n)(n-) ladders and cationic columns of [Cu(en)(2)](2+) (en = ethylenediamine). When [Co(en)(3)]Cl(3) is reacted with 3 equiv of Hg(CN)(2), 1-D [[Hg(CN)(2)](2)Cl](n)(n-) ribbons and [Hg(CN)(2)Cl(2)](2-) moieties are formed; both form hydrogen bonds to [Co(en)(3)](3+) cations, yielding [Co(en)(3)][Hg(CN)(2)Cl(2)][[Hg(CN)(2)](2)Cl] (6). In [Co(NH(3))(6)](2)[Hg(CN)(2)](5)Cl(6).2H(2)O (7), [Co(NH(3))(6)](3+) cations and water molecules are sandwiched between chloride-bridged 2-D anionic [[Hg(CN)(2)](5)Cl(6)](n)(6n-) layers, which contain square cavities. The presence (or absence), number, and profile of hydrogen bond donor sites of the transition metal amine ligands were observed to strongly influence the structural motif and dimensionality adopted by the anionic double salt complex anions, while cation shape and cation charge had little effect. (199)Hg chemical shift tensors and (1)J((13)C,(199)Hg) values measured in selected compounds reveal that the NMR properties are dominated by the Hg(CN)(2) moiety, with little influence from the chloride bonding characteristics. delta(iso)((13)CN) values in the isolated dimers are remarkably sensitive to the local geometry.  相似文献   

8.
The hydrothermal reactions of trivacant Keggin A-alpha-XW(9)O(34) polyoxoanions (X=P(V)/Si(IV)) with transition-metal ions (Ni(II)/Cu(II)/Fe(II)) in the presence of amines result in eight novel high-nuclear transition-metal-substituted polyoxotungstates [{Ni(7)(mu(3)-OH)(3)O(2)(dap)(3)(H(2)O)(6)}(B-alpha-PW(9)O(34))][{Ni(6)(mu(3)-OH)(3)(dap)(3)(H(2)O)(6)}(B-alpha-PW(9)O(34))][Ni(dap)(2)(H(2)O)(2)]4.5 H(2)O (1), [Cu(dap)(H(2)O)(3)](2)[{Cu(8)(dap)(4)(H(2)O)(2)}(B-alpha-SiW(9)O(34))(2)]6 H(2)O (2), (enH(2))(3)H(15)[{Fe(II) (1.5)Fe(III) (12)(mu(3)-OH)(12)(mu(4)-PO(4))(4)}(B-alpha-PW(9)O(34))(4)]ca.130 H(2)O (3), [{Cu(6)(mu(3)-OH)(3)(en)(3) (H(2)O)(3)}(B-alpha-PW(9)O(34))]7 H(2)O (4), [{Ni(6)(mu(3)-OH)(3)(en)(3)(H(2)O)(6)}(B-alpha-PW(9)O(34))]7 H(2)O (5), [{Ni(6)(mu(3)-OH)(3)(en)(2)(H(2)O)(8)}(B-alpha-PW(9)O(34))]7 H(2)O (6), [{Ni(6)(mu(3)-OH)(3)(dap)(2)(H(2)O)(8)}(B-alpha-PW(9)O(34))] 7 H(2)O (7), and [{Ni(6)(mu(3)-OH)(3)(en)(3)(H(2)O)(6)}(B-alpha-SiW(9)O(34))][Ni(0.5)(en)] 3.5 H(2)O (8) (en=ethylenediamine, dap=1,2-diaminopropane). These compounds have been structurally characterized by elemental analyses, IR spectra, diffuse reflectance spectra, thermogravimatric analysis, and X-ray crystallography. The double-cluster complex of phosphotungstate 1 simultaneously contains hepta- and hexa-Ni(II)-substituted trivacant Keggin units [{Ni(7)(mu(3)-OH)(3)O(2)(dap)(3)(H(2)O)(6)}(B-alpha-PW(9)O(34))](2-) and [{Ni(6)(mu(3)-OH)(3)(dap)(3)(H(2)O)(6)}(B-alpha-PW(9)O(34))]. The dimeric silicotungstate 2 is built up from two trivacant Keggin [B-alpha-SiW(9)O(34)](10-) fragments linked by an octa-Cu(II) cluster. The main skeleton of 3 is a tetrameric cluster constructed from four tri-Fe(III)-substituted [Fe(III) (3)(mu(3)-OH)(3)(B-alpha-PW(9) O(34))](3-) Keggin units linked by a central Fe(II) (4)O(4) cubane core and four mu(4)-PO(4) bridges. Complex 4 is an unprecedented three-dimensional extended architecture with hexagonal channels built by hexa-Cu(II) clusters and trivacant Keggin [B-alpha-PW(9)O(34)](9-) fragments. The common feature of 5-8 is that they contain a B-alpha-isomeric trivacant Keggin fragment capped by a hexa-Ni(II) cluster, very similar to the hexa-Ni(II)-substituted trivacant Keggin unit in 1. Magnetic measurements illustrate that 1, 2, and 5 have ferromagnetic couplings within the magnetic metal centers, whereas 3 and 4 reveal the antiferromagnetic exchange interactions within the magnetic metal centers. Moreover, the magnetic behavior of 4 and 5 have been theoretically simulated by the MAGPACK magnetic program package.  相似文献   

9.
A novel chainlike coordination polymer [Cu(II)(2,2'-bipy)(H(2)O)(2)Al(OH)(6)Mo(6)O(18)](n)()(n)()(-), formed from a heteropolyanion [Al(OH)(6)Mo(6)O(18)](3)(-) as a building unit and a copper(II) complex fragment, [Cu(II)(2,2'-bipy)(H(2)O)(2)](2+), as a linker, provides the first example of an extended structure based on an Anderson type of polyanion and a transition metal complex with organic ligand. The intra- and interchain O-H.O hydrogen-bonding interactions are seemingly responsible for the spiral shape of this chain. Crystal data: triclinic space group Ponemacr;, a = 11.2253(18) A, b = 14.5194(17) A, c = 15.2672(10) A, alpha = 112.191(8) degrees, beta = 106.693(9) degrees, gamma = 93.916(13) degrees, and Z = 2.  相似文献   

10.
Kinetics of the oxidative degradation of pyrocatechol violet dye (PCV) [2-[(3,4-dihydroxyphenyl)(3-hydroxy-4-oxocyclohexa-2,5-dien-1-ylidene) methyl]-benzenesulfonic acid] by H(2)O(2) catalyzed by supported transition metal complexes have been studied. The reaction was followed by conventional UV-vis spectrophotometer at lambda(max)=440 nm in a buffer solution at pH 5.1. The supports used were silica gel and cation exchange resins (Dowex-50W, 2 and 8% DVB), while the complexes were [Cu(amm)(4)](2+), [Cu(en)(2)](2+), [Cu(ma)(4)](2+), [Co(amm)(6)](2+), and [Ni(amm)(6)](2+) (amm=ammonia, en=ethylenediamine, and ma=methylamine). The reaction exhibited first-order kinetics with respect to [PCV] and [H(2)O(2)]. The reactivity of the catalysts is correlated with the redox potential of the metal ions, the type of support, and the amount of supported complexes. The rate of the reaction increases with increasing pH and the addition of NaCl. Addition of SDS and CTAB showed inhibiting effects. The reaction is enthalpy-controlled as confirmed from the isokinetic relationship. A reaction mechanism involved the generation of free radicals as an oxidant has been proposed.  相似文献   

11.
The hydrothermal reactions of a Cu(II) starting material, a molybdate source, 2,2'-bipyridine or terpyridine, and the appropriate alkyldiphosphonate ligand yield two series of bimetallic organophosphonate hybrid materials of the general types [Cu(n)(bpy)(m)Mo(x)O(y)(H(2)O)(p)[O(3)P(CH(2))(n)PO(3)](z)] and [Cu(n)(terpy)(m)Mo(x)O(y)(H(2)O)(p)[O(3)P(CH(2))(n)PO(3)](z)]. The bipyridyl series includes the one-dimensional materials [Cu(bpy)(MoO(2))(H(2)O)(O(3)PCH(2)PO(3))] (1) and [[Cu(bpy)(2)][Cu(bpy)(H(2)O)](Mo(5)O(15))(O(3)PCH(2)CH(2)CH(2)CH(2)PO(3))].H(2)O (5.H(2)O) and the two-dimensional hybrids [Cu(bpy)(Mo(2)O(5))(H(2)O)(O(3)PCH(2)PO(3))].H(2)O (2.H(2)O), [[Cu(bpy)](2)(Mo(4)O(12))(H(2)O)(2)(O(3)PCH(2)CH(2)PO(3))].2H(2)O (3.2H(2)O), and [Cu(bpy)(Mo(2)O(5))(O(3)PCH(2)CH(2)CH(2)PO(3))](4). The terpyridyl series is represented by the one-dimensional [[Cu(terpy)(H(2)O)](2)(Mo(5)O(15))(O(3)PCH(2)CH(2)PO(3))].3H(2)O (7.3H(2)O) and the two-dimensional composite materials [Cu(terpy)(Mo(2)O(5))(O(3)PCH(2)PO(3))] (6) and [[Cu(terpy)](2)(Mo(5)O(15))(O(3)PCH(2)CH(2)CH(2)PO(3))] (8). The structures exhibit a variety of molybdate building blocks including isolated [MoO(6)] octahedra in 1, binuclear subunits in 2, 4, and 6, tetranuclear embedded clusters in 3, and the prototypical [Mo(5)O(15)(O(3)PR)(2)](4-) cluster type in 5, 7, and 8. These latter materials exemplify the building block approach to the preparation of extended structures.  相似文献   

12.
Three novel extended vanadogermanates, {[(en)(2)Cd(2)Ge(8)V(12)O(40)(OH)(8)(H(2)O)][Cd(en)(2)](2)}·6H(2)O (1), {[Zn(2)(dap)(3)][Zn(dap)](2)Ge(6)V(15)O(48)(H(2)O)}[Zn(dap)(2)(H(2)O)](2)·3H(2)O (2), and {[Cd(3)(μ-dien)(2)(Hdien)(2)(H(2)O)(2)]Ge(4)V(16)O(42)(OH)(4)(H(2)O)}·2H(2)O (3; en=ethylenediamine, dap=1,2-diaminopropane, dien=diethylenetriamine), have been hydrothermally synthesized and structurally characterized by elemental analysis, IR spectroscopy, powder XRD, thermogravimetric analysis, and single-crystal XRD. Their Ge-V-O cluster anions are derived from the V(18)O(42) cluster shell by replacing VO(5) square pyramids with Ge(2)O(7) groups. Compound 1 exhibits a 1D sinusoidal chain built up from rare inorganic-organic hybrid dicadmium-substituted vanadogermanate {[Cd(en)](2)V(12)O(40)(GeOH)(8)(H(2)O)} clusters and [Cd(en)(2)] complexes. Compound 2 is the first example of a 2D network based on linkage of the unusual {Ge(6)V(15)O(48)(H(2)O)} clusters and two types of Zn complex fragments. Compound 3 is an unprecedented 3D framework built by {Ge(4)V(16)O(42)(OH)(4)(H(2)O)} clusters and rare trinuclear bridging complex cations [Cd(3)(μ-dien)(2)(Hdien)(2)(H(2)O)(2)](8+). Magnetic measurements illustrate that both 1 and 2 have antiferromagnetic exchange interactions between metal centers, whereas 3 exhibits ferrimagnetic behavior, which is rare in polyoxovanadate complexes.  相似文献   

13.
Two novel three-dimensional (3D) extended vanadogermanate-based frameworks, [Co(pdn)(2)](3)[Co(2)(pdn)(4)][V(16)Ge(4)O(44)(OH)(2)(H(2)O)]·5H(2)O (1), [Co(2)(en)(3)][Co(en)(2)](2)[Co(en)(2)(H(2)O)][V(16)Ge(4)O(44)(OH)(2)(H(2)O)]·10.5H(2)O (2), (pdn = 1,2-propanediamine, en = ethylenediamine) have been synthesized under hydrothermal conditions via changing the organic amine. X-ray crystal structure analyses reveal that both frameworks are built of [V(16)Ge(4)O(44)(OH)(2)(H(2)O)](10-) anions and different Co-amine cations. They represent the first example of incorporating elemental Co into the extended vanadogermanate frameworks. Compound 1 shows a 3D framework with NaCl topology based on {V(16)Ge(4)} clusters as nodes, while compound 2 exhibits a 3D (4,6)-connected network with a Schl?fli symbol of (4(6)·6(7)·8(2))(2)(4(2)·6(4)), which is found for the first time in polyoxovanadate chemistry. The diverse types of metal-organoamine subunits play critical roles in the formation on the final structures. Furthermore, variable temperature susceptibility measurements on compounds 1 and 2 demonstrate the presence of anticipated rare ferrimagnetic behavior.  相似文献   

14.
A series of the first coordination polymers using the [Au(CN)(4)](-) anion as a building block has been prepared. The planar tetracyanoaurate anion uses one, two, or four cyano groups to bridge to Ni(II) or Cu(II) centers and exhibits weak Au(III)-N(cyano) interactions between anions. Ni(en)(2)[Au(CN)(4)](2).H(2)O (1, en = ethylenediamine) is a molecular compound with the two [Au(CN)(4)](-) anions coordinating in a trans orientation to Ni(II) without further cyanide coordination. Cu(dien)[Au(CN)(4)](2) (2, dien = diethylenetriamine) forms a similar molecular complex; however, the dimensionality is increased through weak intermolecular Au-N(cyano) interactions of 3.002(14) A to form a 1-D zigzag chain. Cu(en)(2)[Au(CN)(4)](2) (3) also forms a molecular complex similar to 1, but with elongated axial bonds. The complex further aggregates through Au-N(cyano) interactions of 3.035(8) A to form a 2-D array. In [Cu(dmeda)(2)Au(CN)(4)][Au(CN)(4)] (4, dmeda = N,N-dimethylethylenediamine) one [Au(CN)(4)](-) anion coordinates via two cis-N(cyano) donors to the axial sites of two Cu(II) centers to form a 1-D zigzag chain of alternating [Cu(dmeda)(2)](2+) and [Au(CN)(2)](-) units; the other [Au(CN)(4)](-) anion forms a 1-D chain via Au-N(cyano) interactions. In [Cu(bipy)(H(2)O)(2)(Au(CN)(4))(0.5)][Au(CN)(4)](1.5) (5, bipy = 2,2'-bipyridine) one [Au(CN)(4)](-) anion uses all four cyano moieties to bridge four different Cu(II) centers, creating a 1-D chain.  相似文献   

15.
The synthesis, isolation and structural characterization of the sulfite polyoxomolybdate clusters alpha-(D(3h))(C(20)H(44)N)(4){alpha-[Mo(18)O(54)(SO(3))(2)]}CH(3)CN and beta-(D(3d))(C(20)H(44)N)(4){beta-[Mo(18)O(54)(SO(3))(2)]}CH(3)CN is presented. Voltammetric studies in acetonitrile (0.1 M Hx(4)NClO(4), Hx(4)N=tetra-n-hexylammonium) reveal the presence of an extensive series of six one-electron reduction processes for both isomers. Under conditions of bulk electrolysis, the initial [Mo(18)O(54)(SO(3))(2)](4-/5-) and [Mo(18)O(54)(SO(3))(2)](5-/6-) processes produce stable [Mo(18)O(54)(SO(3))(2)](5-) and [Mo(18)O(54)(SO(3))(2)](6-) species, respectively, and the same reduced species may be produced by photochemical reduction. Spectroelectrochemical data imply that retention of structural form results upon reduction, so that both alpha and beta isomers are available at each of the 4-, 5-, and 6-redox levels. However, the alpha isomer is the thermodynamically favored species in both the one- and two-electron-reduced states, with beta-->alpha isomerization being detected in both cases on long time scales (days). EPR spectra also imply that increasing localization of the unpaired electron occurs over the alpha- and beta-[Mo(18)O(54)(SO(3))(2)](5-) frameworks as the temperature approaches 2 K where the EPR spectra show orthorhombic symmetry with different g and hyperfine values for the alpha and beta isomers. Theoretical studies support the observation that it is easier to reduce the alpha cluster than the beta form and also provide insight into the driving force for beta-->alpha isomerization in the reduced state. Data are compared with that obtained for the well studied alpha-[Mo(18)O(54)(SO(4))(2))](4-) sulfate cluster.  相似文献   

16.
An oxidation of cluster anion [Re(12)CS(17)(CN)(6)](6-) by H(2)O(2) in water has been investigated. It was shown that selective two-step oxidation of bridging μ(2)-S-ligands in trigonal prismatic unit {Re(3)(μ(6)-C)(μ(2)-S)(3)Re(3)} takes place. The first stage runs rapidly, whereas the speed of the second stage depends on intensity of ultraviolet irradiation of the reaction mixture. Each stage of the reaction is accompanied by a change in the solution's color. In the first stage of the oxidation, the cluster anion [Re(12)CS(14)(SO(2))(3)(CN)(6)](6-) is produced, in which all bridging S-ligands are turned into bridging SO(2)-ligands. The second stage of the oxidation leads to formation of the anion [Re(12)CS(14)(SO(2))(2)(SO(3))(CN)(6)](6-), in which one of the SO(2)-ligands underwent further oxidation forming the bridging SO(3)-ligand. Seven compounds containing these anions were synthesized and characterized by a set of different methods, elemental analyses, IR and UV/vis spectroscopy, and quantum-chemical calculations. Structures of some compounds based on similar cluster anions, [Cu(NH(3))(5)](3)[Re(12)CS(14)(SO(2))(3)(CN)(6)]·9.5H(2)O, [Ni(NH(3))(6)](3)[Re(12)CS(14)(SO(2))(3)(CN)(6)]·4H(2)O, and [Cu(NH(3))(5)](2.6)[Re(12)CS(14)(SO(2))(3)(CN)(6)](0.6)[{Re(12)CS(14)(SO(2))(2)(SO(3))(CN)(5)(μ-CN)}{Cu(NH(3))(4)}](0.4)·5H(2)O, were investigated by X-ray analysis of single crystals.  相似文献   

17.
To verify whether attractive metallophilic interactions exist in the dimer-of-dimers [Cu(2)(ophen)(2)](2) (Hophen=1H-[1,10]phenanthrolin-2-one) (1), we designed and synthesized a series of such [M(2)L(2)](2) structures by varying the d(10) metal and/or the ligand (M=Cu(I) or Ag(I), L=ophen or obpy; Hobpy=1H-[2,2']bipyridinyl-6-one), and have successfully obtained three dimers-of-dimers: [Ag(2)(ophen)(2)](2).6 H(2)O (2), [Cu(2)(obpy)(2)](2) (3), and [Ag(2)(obpy)(2)](2).4.5 H(2)O.0.5 DMF (4). X-ray analyses of these structures show that interdimer M-M separations in [Ag(2)-(ophen)(2)](2) (3.199 A) are remarkably shorter than those in [Cu(2)(ophen)(2)](2) (3.595 A). Shorter interdimer M-M separations are found in the structures of [M(2)(obpy)(2)](2) (2.986 and 2.993 A in [Cu(2)(obpy)(2)](2), 3.037 to 3.093 A in [Ag(2)(obpy)(2)](2)), in which the pi systems are smaller than in the complexes with the ophen ligand. Detailed structural comparison of these dimers-of-dimers indicates that the interdimer, face-to-face pi-pi interactions repulse rather than support the interdimer metal-metal attractive interactions. This study also yields qualitative comparison of the strengths between argentophilic, cuprophilic, and face-to-face pi-pi interactions. DFT calculations on the four dimers-of-dimers further support the above deduction. The structure of a trimer-of-dimers [Ag(2)(obpy)(2)](3) (Ag-Ag 3.171 to 3.274 A) is further evidence that the oligomerization of the [M(2)L(2)] molecules is favored by stronger metallophilic and weaker face-to-face pi-pi interactions.  相似文献   

18.
A new dimer polyoxoniobate [Cu(en)(2)](11)K(4)Na(2)[KNb(24)O(72)H(9)](2)·120H(2)O (1) has been synthesized and systematically characterized. Visible light photocatalytic H(2) evolution activity was researched with 1 as the visible-light photosensitizer and catalyst, cobaloximes [Co(III)(dmgH)(2)pyCl] as the co-catalysts, and triethylamine (TEA) as the sacrificial electron donor.  相似文献   

19.
Four new Cu(II) complexes {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(7)H(5)O(2))(2)·6H(2)O 1, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(5)H(6)O(4))·8H(2)O 2, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(C(5)H(6)O(4))(2)·16H(2)O 3 and {[Cu(6)(bpy)(6)(OH)(6)(H(2)O)(2)]}(C(8)H(7)O(2))(6)·12H(2)O 4 were synthesized (bpy = 2,2'-bipyridine, H(2)(C(5)H(6)O(4)) = glutaric acid, H(C(7)H(5)O(2)) = benzoic acid, H(C(8)H(7)O(2)) = phenyl acetic acid). The building units in 1-3 are the tetranuclear [Cu(4)(bpy)(4)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(2)](4+) complex cations, and in 4 the hexanuclear [Cu(6)(bpy)(6)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(4)](6+) complex cations, respectively. The tetra- and hexanuclear cluster cores [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] and [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] in the complex cations could be viewed as from step-like di- and trimerization of the well-known hydroxo-bridged dinuclear [Cu(2)(μ(2)-OH)(2)] entities via the out-of-plane Cu-O(H) bonds. The complex cations are supramolecularly assembled into (4,4) topological networks via intercationic ππ stacking interactions. The counteranions and lattice H(2)O molecules are sandwiched between the 2D cationic networks to form hydrogen-bonded networks in 1-3, while the phenyl acetate anions and the lattice H(2)O molecules generate 3D hydrogen-bonded anionic framework to interpenetrate with the (4,4) topological cationic networks with the hexanuclear complex cations in the channels. The ferromagnetic coupling between Cu(II) ions in the [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] cores of 1-3 is significantly stronger via equatorial-equatorial OH(-) bridges than via equatorial-apical ones. The outer and the central [Cu(2)(OH)(2)] unit within the [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] cluster cores in 4 exhibit weak ferromagnetic and antiferromagnetic interactions, respectively. Results about i.r. spectra, thermal and elemental analyses are presented.  相似文献   

20.
The interaction of two luminescent metallopolymers; [Ru(bpy)(2)(PVP)(10)](2+) and [Ru(bpy)(2)(CAIP)co-poly(7)](+), where bpy is 2,2'-bipyridyl, PVP is polyvinylpyridine, and (CAIP)co-poly(7) is poly(styrene(6)-co-p-(aminomethyl)styrene) amide linked to 2-(4-carboxyphenyl)imidazo[4,5-f] [1,10]phenanthroline, with the Dawson polyoxomolybdate α-[Mo(18)O(54)(SO(4))(2)](4-) is described. Both metallopolymers undergo electrostatic association with the polyoxometalate. From both electronic and luminescence spectroscopy the thermodynamic products were determined to be {[Ru(bpy)(2)(PVP)(10)](4.5)[Mo(18)O(54)(SO(4))(2)]}(5+) and {[Ru(bpy)(2)(CAIP)co-poly(7)](5)[Mo(18)O(54)(SO(4))(2)]}(+), i.e. in both instances, the number of ruthenium centres in the cluster exceeds the number required for charge neutralization of the molybdate centre. Association quenches the luminescence of the metallopolymer although, consistent with the excess of Ru(ii) present in the associated composites, emission is not completely extinguished even when a large excess of [Mo(18)O(54)(SO(4))(2)](4-) is present. The observed emission lifetime was not affected by [Mo(18)O(54)(SO(4))(2)](4-) therefore quenching was deemed static. The luminescent intensity data was found to fit best to a (sphere of action) Perrin model from which the radii of the quenching were calculated as 4.6 ? and 5.8 ? for [Ru(bpy)(2)(PVP)(10)](2+) and [Ru(bpy)(2)(CAIP co-poly)(7)](+) respectively. Both UV/Vis and resonance Raman data indicate the presence of a new optical transition centered around 490 nm for the composite, {[Ru(bpy)(2)(PVP)(10)](4.5)[Mo(18)O(54)(SO(4))(2)]}(5+) but not for {[Ru(bpy)(2)(CAIP)co-poly(7)](5)[Mo(18)O(54)(SO(4))(2)]}(+). This indicates strong electronic interaction between the metal centres in the former composite, which despite good thermodynamic analogy, is not observed for {[Ru(bpy)(2)(CAIP)co-poly(7)](5)[Mo(18)O(54)(SO(4))(2)]}(+). These results are consistent with photoelectrochemical studies of layer by layer assemblies of these films which indicate that the ruthenium centre sensitizes polyoxometalate photo-oxidation of benzyl alcohol in {[Ru(bpy)(2)(PVP)(10)](4.5)[Mo(18)O(54)(SO(4))(2)]}(5+) but not in {[Ru(bpy)(2)(CAIP)co-poly(7)](5)[Mo(18)O(54)(SO(4))(2)]}(+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号