首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the synthesis of the first well-documented example of a cyano-bridged single-molecule magnet. An assembly reaction parallel to that employed in producing the trigonal prismatic [(Me(3)tacn)(6)MnCr(6)(CN)(18)](2+) (Me(3)tacn = N,N',N"-trimethyl-1,4,7-triazacyclononane) cluster affords K[(Me(3)tacn)(6)MnMo(6)(CN)(18)](ClO(4))(3) (1), containing an analogous molybdenum(III)-substituted cluster. Fits to the DC magnetic susceptibility and magnetization data for 1 show that the MnMo(6) cluster possesses weak antiferromagnetic coupling (J = -6.7 cm(-1)), leading to an S = (13)/(2) ground state with significantly enhanced magnetic anisotropy (D = -0.33 cm(-1) and E = -0.018 cm(-1)). Consistent with these results, AC magnetic susceptibility measurements show the molecule to exhibit slow magnetic relaxation indicative of a single-molecule magnet with an energy barrier of 10 cm(-1) for spin reversal.  相似文献   

2.
Reaction of the high-magnetic anisotropy building unit [ReCl(4)(CN)(2)](2-) with [Cu(MeCN)(6)](2+) and hydrotris(pyrazol-1-yl)borate (Tp(-)) affords the zigzag chain compound (Bu(4)N)[TpCuReCl(4)(CN)(2)]. Dc magnetic susceptibility measurements reveal the presence of ferromagnetic exchange coupling between Re(IV) and Cu(II) centers along each chain and a fit to the data gives an exchange constant of J/k(B) = +41 K (+29 cm(-1)), representing the strongest ferromagnetic coupling yet observed through cyanide. Below 11.4 K and at applied fields of less than 3600 Oe, the compound undergoes a phase transition to an antiferromagnetic ground state, stemming from weak π-π interchain interactions of strength J(⊥)/k(B) = -1.7 K (-1.2 cm(-1)). This metamagnetic behavior is fully elucidated using both experimental and theoretical methods. In addition, theoretical modeling provides a detailed determination of the local anisotropy tensors corresponding to the [ReCl(4)(CN)(2)](2-) units and demonstrates that the zigzag arrangement of the Re(IV) centers significantly reduces the effective anisotropy of the chain. These results demonstrate the utility of the Re(IV)-CN-Cu(II) linkage and the importance of anisotropic spin orientation in designing strongly coupled systems, which will aid in both the realization of single-chain magnets with higher relaxation barriers and in the construction of high-dimensional cyano-bridged materials exhibiting higher ordering temperatures.  相似文献   

3.
Reactions of Re(V), tetradentate Schiff base complexes with tertiary phosphines have previously yielded both rearranged Re(V) and reduced Re(III) complexes. To further understand this chemistry, the rigid diiminediphenol (N(2)O(2)) Schiff base ligand sal(2)phen (N,N'-o-phenylenebis(salicylaldimine)) was reacted with (n-Bu(4)N)[ReOCl(4)] to yield trans-[ReOCl(sal(2)phen)] (1). On reaction with triphenylphosphine (PPh(3)), a rearranged Re(V) product cis-[ReO(PPh(3))(sal(2)phen*)]PF(6) (2), in which one of the imines was reduced to an amine during the reaction, and the reduced Re(III) products trans-[ReCl(PPh(3))(sal(2)phen)] (4) and trans-[Re(PPh(3))(2)(sal(2)phen)](+) (5) were isolated. Reaction of sal(2)phen with [ReCl(3)(PPh(3))(2)(CH(3)CN)] resulted in the isolation of [ReCl(2)(PPh(3))(2)(salphen)] (3). The compounds were characterized using standard spectroscopic methods, elemental analyses and single crystal X-ray crystallography.  相似文献   

4.
Octahedral coordination of molybdenum(III) is achieved by limiting the amount of cyanide available upon complex formation. Reaction of Mo(CF(3)SO(3))(3) with LiCN in DMF affords Li(3)[Mo(CN)(6)] x 6DMF (1), featuring the previously unknown octahedral complex [Mo(CN)(6)](3-). The complex exhibits a room-temperature moment of mu(eff) = 3.80 mu(B), and assignment of its absorption bands leads to the ligand field parameters Delta(o) = 24800 cm(-1) and B = 247 cm(-1). Further restricting the available cyanide in a reaction between Mo(CF(3)SO(3))(3) and (Et(4)N)CN in DMF, followed by recrystallization from DMF/MeOH, yields (Et(4)N)(5)[Mo(2)(CN)(11)] x 2DMF x 2MeOH (2). The dinuclear [Mo(2)(CN)(11)](5-) complex featured therein contains two octahedrally coordinated Mo(III) centers spanned by a bridging cyanide ligand. A fit to the magnetic susceptibility data for 2, gives J = -113 cm(-1) and g = 2.33, representing the strongest antiferromagnetic coupling yet observed through a cyanide bridge. Efforts to incorporate these new complexes in magnetic Prussian blue-type solids are ongoing.  相似文献   

5.
A highly asymmetric Ni(II) cluster [Ni(4)(OH)(OMe)(3)(Hphpz)(4)(MeOH)(3)](MeOH) (1) (H(2)phpz=3-methyl-5-(2-hydroxyphenyl)pyrazole) has been prepared and its structure determined by means of single-crystal X-ray diffraction by using synchrotron radiation. Variable-temperature bulk-magnetization measurements show that the complex exhibits intramolecular-ferromagnetic interactions leading to a spin ground state S=4 with close-lying excited states. Magnetization and high-frequency EPR measurements suggest the presence of sizable Ising-type magnetic anisotropy, with zero-field splitting parameters D=-0.263 cm(-1) and E=0.04 cm(-1) for the spin ground state, and an isotropic g value of 2.25. The presence of both axial and transverse anisotropy was confirmed through low-temperature specific heat determinations down to 300 mK, but no slow relaxation of the magnetization was observed by AC measurements down to 1.8 K. Interestingly, AC susceptibility measurements down to temperatures as low as 23 mK showed no indication of slow relaxation of the magnetization in 1. Thus, despite the presence of an anisotropy barrier (U approximately 4.21 cm(-1) for the purely axial limit), the magnetization relaxation remains extremely fast down to the lowest temperatures. The estimated quantum tunneling rate, Gamma>0.667 MHz, makes this complex a prime candidate for observation of coherent tunneling of the magnetization.  相似文献   

6.
Five members of a new family of polyoxometalate (POM)-ligated tetranuclear rare earth metal complexes have been synthesized and characterized. These compounds have the general formula (HDABCO)(8)H(5)Li(8)[Ln(4)As(5)W(40)O(144)(H(2)O)(10)(gly)(2)]·25H(2)O [Ln = Gd (1), Tb (2), Dy (3), Ho (4) and Y = (5), HDABCO = monoprotonated 1,4-diazabicyclooctane, gly = glycine] and were synthesized from the preformed POM precursor [As(2)W(19)O(67)(H(2)O)](14-). The structure is comprised of two {As(2)W(19)O(68)} building blocks linked by a unit containing four rare earth ions and two additional tungsten centers, with the two glycine ligands playing a key bridging role. Two crystallographically distinct rare earth ions are present in each complex, both of which possess axially compressed, approximate square antiprismatic coordination geometry. The variable-temperature magnetic susceptibility profiles for 2-4 are dominated by population/depopulation of the M(J) sublevels of the relevant ground terms, and fitting of the data has afforded the ligand field parameters in each case, from which the energies of the M(J) sublevels can be calculated. Alternating current magnetic susceptibility data have revealed the onset of slow magnetic relaxation for 3, with the energy barrier to magnetization reversal determined to be 3.9(1) K. As for other lanthanoid complexes that display slow magnetic relaxation, this energy barrier is due to the splitting of the M(J) sublevels of the Dy(3+) ions such that the ground sublevel has a relatively large |M(J)| value, thereby affording Ising-type magnetic anisotropy. This complex is thus the first POM-supported polynuclear lanthanoid-based SMM. Simulation of the W-band EPR spectrum of 1 has afforded the spin Hamiltonian parameters for this species, while the X-band EPR spectrum of 3 indicates the presence of a non-negligible fourth-order transverse component of the anisotropy, which is responsible for the small effective energy barrier observed for 3 and the absence of slow magnetic relaxation for 4.  相似文献   

7.
A new family of tetranuclear Ni complexes [Ni(4)(ROH)(4)L(4)] (H(2)L = salicylidene-2-ethanolamine; R = Me (1) or Et (2)) has been synthesized and studied. Complexes 1 and 2 possess a [Ni(4)O(4)] core comprising a distorted cubane arrangement. Magnetic susceptibility and inelastic neutron scattering studies indicate a combination of ferromagnetic and antiferromagnetic pairwise exchange interactions between the four Ni(II) centers, resulting in an S = 4 spin ground state. Magnetization measurements reveal an easy-axis-type magnetic anisotropy with D approximately -0.93 cm(-)(1) for both complexes. Despite the large magnetic anisotropy, no slow relaxation of the magnetization is observed down to 40 mK. To determine the origin of the low-temperature magnetic behavior, the magnetic anisotropy of complex 1 was probed in detail using inelastic neutron scattering and frequency domain magnetic resonance spectroscopy. The spectroscopic studies confirm the easy-axis-type anisotropy and indicate strong transverse interactions. These lead to rapid quantum tunneling of the magnetization, explaining the unexpected absence of slow magnetization relaxation for complex 1.  相似文献   

8.
Cotton FA  Murillo CA  Wang X  Yu R 《Inorganic chemistry》2004,43(26):8394-8403
Reaction of racemic cis-Rh(2)(C(6)H(4)PPh(2))(2)(OAc)(2)(HOAc)(2) with excess Me(3)OBF(4) in CH(3)CN results in the formation of racemic cis-[Rh(2)(C(6)H(4)PPh(2))(2)(CH(3)CN)(6)](BF(4))(2).0.5H(2)O (1.0.5H(2)O), an ionic dirhodium complex which has two cisoid nonlabile orthometalated phosphine bridging anions and six labile CH(3)CN ligands in equatorial and axial positions. Reactions of 1 with tetraethylammonium salts of the linear dicarboxylates, oxalate, terephthalate, and 4,4'-biphenyl-dicarboxylate, in organic solvents, produced racemic crystals of the triangular compounds [Rh(2)(C(6)H(4)PPh(2))(2)](3)(C(2)O(4))(3)(py)(6).6MeOH.H(2)O (2.6MeOH.H(2)O), [Rh(2)(C(6)H(4)PPh(2))(2)](3)(O(2)CC(6)H(4)CO(2))(3)(DMF)(6).6.5DMF.0.5H(2)O (3.6.5DMF.0.5H(2)O), and [Rh(2)(C(6)H(4)PPh(2))(2)](3)(O(2)CC(6)H(4)C(6)H(4)CO(2))(3)(py)(6).4.5CH(3)OH.0.75H(2)O (4.4.5CH(3)OH.0.75H(2)O), respectively. All compounds are electrochemically active. The relative chiralities of the dirhodium units in each triangle have been established using a combination of data from X-ray crystallography and (31)P NMR spectroscopy.  相似文献   

9.
Xu GF  Gamez P  Tang J  Clérac R  Guo YN  Guo Y 《Inorganic chemistry》2012,51(10):5693-5698
[Dy(III)(HBpz(3))(2)](2+) moieties (HBpz(3)(-) = hydrotris(pyrazolyl)borate) and a 3d transition-metal ion (Fe(III) or Co(III)) have been rationally assembled using an dithiooxalato dianion ligand into 3d-4f [MDy(3)(HBpz(3))(6)(dto)(3)]·4CH(3)CN·2CH(2)Cl(2) (M = Fe (1), Co (2) complexes. Single-crystal X-ray studies reveal that three eight-coordinated Dy(III) centers in a square antiprismatic coordination environment are connecting to a central octahedral trivalent Fe or Co ion forming a propeller-type complex. The dynamics of the magnetization in the two isostructural compounds, modulated by the nature of the central M(III) metal ion, are remarkably different despite their analogous direct current (dc) magnetic properties. The slow relaxation of the magnetization observed for 2 mainly originates from isolated Dy ions, since a diamagnetic Co(III) metal ion links the magnetic Dy(III) ions. In the case of 1, the magnetic interaction between S = 1/2 Fe(III) ion and the three Dy(III) magnetic centers, although weak, generates a complex energy spectrum of magnetic states with low-lying excited states that induce a smaller energy gap than for 2 and thus a faster relaxation of the magnetization.  相似文献   

10.
采用缓慢挥发法合成了一例单核镝配合物[Dy(pmbp)3(H2O)2]·CH3CN(1),(Hpmbp=1?苯基?3?甲基?4?苯甲酰基?5?吡唑啉酮)。单晶X射线衍射数据表明镝离子与3个pmbp-配体和2个H2O分子配位,形成八配位的扭曲四方反棱柱构型。磁性测试表明配合物1在加场下可以表现出慢的磁弛豫行为,其有效能垒为42 K。通过理论计算得出了配合物1的磁易轴方向,并解释了其磁学性能。磁构关系研究分析了pmbp-配体的共轭效应对配合物1磁各向异性的影响。  相似文献   

11.
The reduction of the mononitrosyl Re(II) salt [NMe(4)](2)[ReCl(5)(NO)] (1) with zinc in acetonitrile afforded the Re(i) dichloride complex [ReCl(2)(NO)(CH(3)CN)(3)] (2). Subsequent ligand substitution reactions with PCy(3), PiPr(3) and P(p-tolyl)(3) afforded the bisphosphine Re(i) complexes [ReCl(2)(NO)(PR(3))(2)(CH(3)CN)] (3, R = Cy a, iPr b, p-tolyl c) in good yields. The acetonitrile ligand in 3 is labile, permitting its replacement with H(2) (1 bar) to afford the dihydrogen Re(I) complexes [ReCl(2)(NO)(PR(3))(2)(η(2)-H(2))] (4, R = Cy a, iPr b). The catalytic activity of 2, 3 and 4 in hydrogen-related catalyses including dehydrocoupling of Me(2)NH·BH(3), dehydrogenative silylation of styrenes, and hydrosilylation of ketones and aryl aldehydes were investigated, with the main focus on phosphine and halide effects. In the dehydrocoupling of Me(2)NH·BH(3), the phosphine-free complex 2 exhibits the same activity as the bisphosphine-substituted systems. In the dehydrogenative silylation of styrenes, 3a and 4a bearing PCy(3) ligands exhibit high catalytic activities. Monochloro Re(I) hydrides [Re(Cl)(H)(NO)(PR(3))(2)(CH(3)CN)] (5, R = Cy a, iPr b) were proven to be formed in the initiation pathway. The phosphine-free complex 2 showed in dehydrogenative silylations even higher activity than the bisphosphine derivatives, which further emphasizes the importance of a facile phosphine dissociation in the catalytic process. In the hydrosilylation of ketones and aryl aldehydes, at least one rhenium-bound phosphine is required to ensure high catalytic activity.  相似文献   

12.
The synthesis and structural analysis (single crystal X-ray data) of two mononuclear ([Cu(L(1))(CN)]BF(4) and [Cu(L(3))(CN)](BF(4))) and three related, cyanide-bridged homodinuclear complexes ([{Cu(L(1))}(2)(CN)](BF(4))(3)·1.35 H(2)O, [{Cu(L(2))}(2)(CN)](BF(4))(3) and [{Ni(L(3))}(2)(CN)](BF(4))(3)) with a tetradentate (L(1)) and two isomeric pentadentate bispidine ligands (L(2), L(3); bispidines are 3,7-diazabicyclo[3.3.1]nonane derivatives) are reported, together with experimental magnetic, electron paramagnetic resonance (EPR), and electronic spectroscopic data and a ligand-field-theory-based analysis. The temperature dependence of the magnetic susceptibilities and EPR transitions of the dicopper(II) complexes, together with the simulation of the EPR spectra of the mono- and dinuclear complexes leads to an anisotropic set of g- and A-values, zero-field splitting (ZFS) and magnetic exchange parameters (Cu1: g(z) = 2.055, g(x) = 2.096, g(y) = 2.260, A(z) = 8, A(x) = 8, A(y) = 195 × 10(-4) cm(-1), Cu2: g and A as for Cu(1) but rotated by the Euler angles α = -6°, β = 100°, D(exc) = -0.07 cm(-1), E(exc)/D(exc) = 0.205 for [{Cu(L(1))}(2)(CN)](BF(4))(3)·1.35 H(2)O; Cu1,2: g(z) = 2.025, g(x) = 2.096, g(y) = 2.240, A(z) = 8, A(x) = 8, A(y) = 190 × 10(-4)cm(-1), D(exc) = -0.159 cm(-1), E(exc)/D(exc) = 0.080 for [{Cu(L(2))}(2)(CN)](BF(4))(3)). Thorough ligand-field-theory-based analyses, involving all micro states and all relevant interactions (Jahn-Teller and spin-orbit coupling) and DFT calculations of the magnetic exchange leads to good agreement between the experimental observations and theoretical predictions. The direction of the symmetric magnetic anisotropy tensor D(exc) in [{Cu(L(2))}(2)(CN)](BF(4))(3) is close to the Cu···Cu vector (22°), that is, nearly perpendicular to the Jahn-Teller axis of each of the two Cu(II) centers, and this reflects the crystallographically observed geometry. Antisymmetric exchange in [{Cu(L(1))}(2)(CN)](BF(4))(3)·1.35 H(2)O causes a mixing between the singlet ground state and the triplet excited state, and this also reflects the observed geometry with a rotation of the two Cu(II) sites around the Cu···Cu axis.  相似文献   

13.
The trioxo [ReO(3){SO(3)C(pz)(3)}] (1) (pz = pyrazolyl) and oxo [ReOCl{SO(3)C(pz)(3)}(PPh(3))]Cl (2) compounds with tris(pyrazolyl)methanesulfonate were obtained by treatment of Re(2)O(7) or [ReOCl(3)(PPh(3))(2)], respectively, with Li[SO(3)C(pz)(3)], whereas [ReCl(3){HC(pz)(3)}] (3), [ReCl(3){HC(3,5-Me(2)pz)(3)}] (4) and [ReCl(4){eta(2)-HC(pz)(3)}] (5) were prepared by reaction of [ReOCl(3)(PPh(3))(2)] (3,4) or [ReCl(4)(NCMe)(2)] (5) with hydrotris(pyrazolyl)methane HC(pz)(3) (3,5) or hydrotris(3,5-dimethyl-1-pyrazolyl)methane HC(3,5-Me(2)pz)(3) (4). [ReO{SO(3)C(pz)(3)}{OC(CH(3))(2)pz}][ReO(4)] 6, with a chelated pyrazolyl-alkoxide, was derived from an unprecedented ketone-pyrazolyl coupling on reaction of crude 1 with acetone. The compounds have been characterized by elemental analyses, IR and NMR spectroscopies, FAB-MS spectrometry and cyclic voltammetry and, in the case of 5 and 6, also by single-crystal X-ray diffraction. The electrochemical E(L) Lever parameter has been estimated, for the first time, for the SO(3)C(pz)(3)(-) and oxo ligands allowing the measurement of their electron-donor character and comparison with other ligands. Compounds 1, 2 and 6 appear to be the first tris(pyrazolyl)methanesulfonate complexes of rhenium to be reported.  相似文献   

14.
The substitution of Mo(III) for Cr(III) in metal-cyanide clusters is demonstrated as an effective means of increasing the strength of the magnetic exchange coupling and introducing magnetic anisotropy. Synthesis of the octahedral complex [(Me(3)tacn)Mo(CN)(3)] (Me(3)tacn = N,N',N"-trimethyl-1,4,7-triazacyclononane) is accomplished with the addition of precisely 3 equiv of LiCN to a solution of [(Me(3)tacn)Mo(CF(3)SO(3))(3)] in DMF. An excess of LiCN prompts formation of a seven-coordinate complex, [(Me(3)tacn)Mo(CN)(4)](1)(-), whereas less LiCN produces multinuclear species such as [(Me(3)tacn)(2)Mo(2)(CN)(5)](1+). In close parallel to reactions previously performed with [(Me(3)tacn)Cr(CN)(3)], assembly reactions between [(Me(3)tacn)Mo(CN)(3)] and [Ni(H(2)O)(6)](2+) or [(cyclam)Ni(H(2)O)(2)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) afford face-centered cubic [(Me(3)tacn)(8)Mo(8)Ni(6)(CN)(24)](12+) and linear [(Me(3)tacn)(2)(cyclam)NiMo(2)(CN)(6)](2+) clusters, respectively. Generation of the former involves a thermally induced cyanide linkage isomerization, which rapidly leads to a low-spin form of the cluster containing diamagnetic Ni(II) centers. The cyclic voltammagram of this species in DMF reveals a sequence of six successive reduction waves spaced approximately 130 mV apart, suggesting class II mixed-valence behavior upon reduction. The magnetic properties of the aforementioned linear cluster are consistent with the expected ferromagnetic coupling and an S = 4 ground state, but otherwise vary slightly with the specific conformation adopted (as influenced by the packing of associated counteranions and solvate molecules in the crystal). Magnetization data indicate an axial zero-field splitting parameter with a magnitude falling in the range [D] = 0.44-0.72 cm(-1), and fits to the magnetic susceptibility data yield exchange coupling constants in the range J = 17.0-17.6 cm(-1). These values represent significant increases over those displayed by the analogous Cr(III)-containing cluster. When perchlorate is used as a counteranion, [(Me(3)tacn)(2)(cyclam)NiMo(2)(CN)(6)](2+) crystallizes from water in a dimeric form with pairs of the linear clusters directly linked via hydrogen bonding. In this case, fitting the magnetic susceptibility data requires use of two coupling constants: one intramolecular with J = 14.9 cm(-1) and another intermolecular with J' = -1.9 cm(-1). Reacting [(Me(3)tacn)Mo(CN)(3)] with a large excess of [(cyclam)Ni(H(2)O)(2)](2+) produces a [(Me(3)tacn)(2)(cyclam)(3)(H(2)O)(2)Ni(3)Mo(2)(CN)(6)](6+) cluster possessing a zigzag structure that is a simple extension of the linear cluster geometry. Its magnetic behavior is consistent with weaker ferromagnetic coupling and an S = 6 ground state. Similar reactions employing an equimolar ratio of reactants afford related one-dimensional chains of formula [(Me(3)tacn)(cyclam)NiMo(CN)(3)](2+). Once again, the ensuing structure depends on the associated counteranions, and the magnetic behavior indicates ferromagnetic coupling. It is hoped that substitutions of the type exemplified here will be of utility in the design of new single-molecule magnets.  相似文献   

15.
The cyano-bridged trinuclear compound, (NEt(4))[Mn(2)(salmen)(2)(MeOH)(2)Fe(CN)(6)] (1) (salmen(2)(-) = rac-N,N'-(1-methylethylene)bis(salicylideneiminate)), reported previously by Miyasaka et al. (ref 19d) has been reinvestigated using combined ac and dc susceptibility measurements. The strong frequency dependence of the ac susceptibility and the slow relaxation of the magnetization show that 1 behaves as a single-molecule magnet with an S(T) = (9)/(2) spin ground state. Its relaxation time (tau) follows an Arrhenius law with tau(0) = 2.5 x 10(-)(7) s and Delta(eff)/k(B) = 14 K. Moreover, below 0.3 K, tau saturates around 470 s, indicating that quantum tunneling of the magnetization becomes the dominant process of relaxation. (NEt(4))[Mn(2) (5-MeOsalen)(2)Fe(CN)(6)] (2) (5-MeOsalen(2)(-) = N,N'-ethylenebis(5-methoxysalicylideneiminate)) is a heterometallic one-dimensional assembly made of the trinuclear [Mn(III)(SB)-NC-Fe(III)-CN-Mn(III)(SB)] (SB is a salen-type Schiff-base ligand) motif similar to 1. Compound 2 has two types of bridges, a cyano bridge (-NC-) and a biphenolate bridge (-(O)(2)-), connecting Mn(III) and Fe(III) ions and the two Mn(III) ions, respectively. Both bridges mediate ferromagnetic interactions, as shown by modeling the magnetic susceptibility above 10 K with g(av) = 2.03, J(Mn)(-)(Fe)/k(B) = +6.5 K, and J'/k(B) = +0.07 K, where J' is the exchange coupling between the trimer units. The dc magnetic measurements of a single crystal using micro-SQUID and Hall-probe magnetometers revealed a uniaxial anisotropy (D(T)/k(B) = -0.94 K) with an easy axis lying along the chain direction. Frequency dependence of the ac susceptibility and time dependence of the dc magnetization have been performed to study the slow relaxation of the magnetization. A mean relaxation time has been found, and its temperature dependence has been studied. Above 1.4 K, both magnetic susceptibility and relaxation time are in agreement with the dynamics described in the 1960s by R. J. Glauber for one-dimensional systems with ferromagnetically coupled Ising spins (tau(0) = 3.7 x 10(-)(10) s and Delta(1)/k(B) = 31 K). As expected, at lower temperatures below 1.4 K, the relaxation process is dominated by the finite-size chain effects (tau'(0) = 3 x 10(-)(8) s and Delta(2)/k(B) = 25 K). The detailed analysis of this single-chain magnet behavior and its two regimes is consistent with magnetic parameters independently estimated (J'and D(T)) and allows the determination of the average chain length of 60 nm (or 44 trimer units). This work illustrates nicely a new strategy to design single-chain magnets by coupling ferromagnetically single-molecule magnets in one dimension.  相似文献   

16.
The preparations, X-ray structures, and magnetic characterizations are presented for two new pentadecanuclear cluster compounds: [Ni(II)(Ni(II)(MeOH)(3))(8)(mu-CN)(30)(M(V)(CN)(3))(6)].xMeOH.yH(2)O (M(V) = Mo(V) (1) with x = 17, y = 1; M(V) = W(V) (2) with x = 15, y = 0). Both compounds crystallize in the monoclinic space group C2/c, with cell dimensions of a = 28.4957(18) A, b = 19.2583(10) A, c = 32.4279(17) A, beta = 113.155(6) degrees, and Z = 4 for 1 and a = 28.5278(16) A, b = 19.2008(18) A, c = 32.4072(17) A, beta = 113.727(6) degrees, and Z = 4 for 2. The structures of 1 and 2 consist of neutral cluster complexes comprising 15 metal ions, 9 Ni(II) and 6 M(V), all linked by mu-cyano ligands. Magnetic susceptibilities and magnetization measurements of compounds 1 and 2 in the crystalline and dissolved state indicate that these clusters have a S = 12 ground state, originating from intracluster ferromagnetic exchange interactions between the mu-cyano-bridged metal ions of the type Ni(II)-NC-M(V). Indeed, these data show clearly that the cluster molecules stay intact in solution. Ac magnetic susceptibility measurements reveal that the cluster compounds exhibit magnetic susceptibility relaxation phenomena at low temperatures since, with nonzero dc fields, chi"(M) has a nonzero value that is frequency dependent. However, there appears no out-of-phase (chi"(M)) signal in zero dc field down to 1.8 K, which excludes the expected signature for a single molecule magnet. This finding is confirmed with the small uniaxial magnetic anisotropy value for D of 0.015 cm(-1), deduced from the high-field, high-frequency EPR measurement, which distinctly reveals a positive sign in D. Obviously, the overall magnetic anisotropy of the compounds is too low, and this may be a consequence of a small single ion magnetic anisotropy combined with the highly symmetric arrangement of the metal ions in the cluster molecule.  相似文献   

17.
Tuning the magnetic anisotropy of metal ions remains highly interesting in the design of improved single‐molecule magnets (SMMs). We herein report synthetic, structural, magnetic, and computational studies of four mononuclear CoII complexes, namely [Co(hfac)2(MeCN)2] ( 1 ), [Co(hfac)2(Spy)2] ( 2 ), [Co(hfac)2(MBIm)2] ( 3 ), and [Co(hfac)2(DMF)2] ( 4 ) (MeCN=acetonitrile, hfac=hexafluoroacetylacetone, Spy=4‐styrylpyridine, MbIm=5,6‐dimethylbenzimidazole, DMF=N,N‐dimethylformamide), with distorted octahedral geometry constructed from hexafluoroacetylacetone (hfac) and various axial ligands. By a building block approach, complexes 2 – 4 were synthesized by recrystallization of the starting material of 1 from various ligands containing solution. Magnetic and theoretical studies reveal that 1 – 4 possess large positive D values and relative small E parameters, indicating easy‐plane magnetic anisotropy with significant rhombic anisotropy in 1 – 4 . Dynamic alternative current (ac) magnetic susceptibility measurements indicate that these complexes exhibit slow magnetic relaxation under external fields, suggesting field‐induced single‐ion magnets (SIMs) of 1 – 4 . These results provide a promising platform to achieve fine tuning of magnetic anisotropy through varying the axial ligands based on Co(II) bis(hexafluoroacetylacetonate) complexes.  相似文献   

18.
Two isomorphous Co(II) and Ni(II) coordination polymers with azide and the 4-(4-pyridyl)benzoic acid N-oxide ligand (4,4-Hopybz) were synthesized, and structurally and magnetically characterized. They are formulated as [M(4,4-opybz)(N(3))(H(2)O)](n) (M = Co, 1 and Ni, 2). The compounds consist of 2D coordination networks, in which 1D coordination chains with (μ-N(3))(μ-COO) bridges are interlinked by the 4,4-opybz spacers, and the structure also features intra- and interchain O-HO hydrogen-bonding bridges between metal ions. Both compounds exhibit ferromagnetic interactions through the intrachain (μ-N(3))(μ-COO)(O-HO) bridges and antiferromagnetic interactions through the interchain O-HO bridges. The ferromagnetic chains are antiferromagnetically ordered, and the antiferromagnetic phases exhibit field-induced metamagnetic transition. It is found that 1 displays slow relaxation of magnetization, typical of single-chain magnets, while 2 does not. The difference emphasizes the great importance of large magnetic anisotropy for single-chain-magnet dynamics.  相似文献   

19.
Chow CF  Lam MH  Wong WY 《Inorganic chemistry》2004,43(26):8387-8393
A trinuclear heterobimetallic Ru(II)-Cu(II) donor-acceptor complex, [Ru(II)((t)Bubpy)(CN)(4)-[Cu(II)(dien)](2)](ClO(4))(2) ((t)Bubpy = 4,4'-di-tert-butyl-2,2'-bipyridine; dien = diethylenetriamine) (1), has been synthesized and successfully used as an chemodosimetric ensemble for the specific detection of cyanide in aqueous DMF. X-ray crystallography, solid and solution IR spectroscopy, and conductivity measurements reveal that complex 1 is a one-dimensional polymer in the crystalline state and dissociates into its [Ru(II)((t)Bubpy)(CN)(2)[(CN)Cu(II)(dien)L](2)](2+) (L = solvent) monomeric units in polar solvents. The MLCT transition and luminescence properties of the solvatochromic [Ru(II)((t)Bubpy)(CN)(4)](2)(-) donor are perturbed by the coordination of two Cu(II) acceptors but restored in the presence of CN(-). Spectroscopic and mass spectrometric studies confirm the cleavage of the cyano bridge between Ru(II) and Cu(II) of the chemodosimetric ensemble after the binding of cyanide to the Cu(II) centers. The overall binding constant, K(B), between 1 and CN(-) is measured to be (7.39 +/- 0.23) x 10(6) M(-2). A detection limit of 1.2 microM (0.03 ppm) of CN(-) in aqueous DMF (pH 7.4) is achievable. Thermodynamic evaluation shows that the analyte specificity of chemodosimeter 1 is attributable to the relative stability of the donor-acceptor complex to that of adducts formed between the acceptor metal center and the analytes.  相似文献   

20.
A new cyano-bridged Tb(III)-Cr(III) heterometallic complex [Tb(H(2)O)(2)(DMF)(4){Cr(CN)(6)}]·H(2)O (DMF = dimethylformamide) (1), assembled from paramagnetic hexacyanochromium(III) [Cr(CN)(6)](3-) building block and highly anisotropic terbium(III) ion has been prepared and structurally and magnetically characterized. Complex 1 shows one-dimensional (1D) zig-zag chain-like structural motif which is further extended into three-dimensional network through hydrogen-bonding interactions. The long-range magnetic ordering observed in complex 1, which is possibly due to interchain magnetic dipolar interactions, illuminates that this complex is a molecule-based magnet with critical temperature of about 5 K. This higher critical temperature among those of Ln(III)-Cr(III) heterometallic complexes exhibiting long-range magnetic ordering is probably due to the introduction of highly anisotropic terbium(III) ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号