首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Three analogous one dimensional (1D) polymeric iron(II) spin crossover (SCO) materials containing the new ligand 4,6-bis(2',2'-pyridyl)pyrazine (bdpp) have been comprehensively characterised magnetically (thermal and light-induced) and structurally. Within this series are two polymorphs of the formula [Fe(NCS)(2)(bdpp)], 1 and 2 a, which differ magnetically in that phase 1 undergoes a full two-step SCO (T(1/2(1))=135 K and T(1/2(2))=90 K) whereas phase 2 a remains high spin (HS) over all temperatures. The central distinction between these two materials lies in the presence of intermolecular pi-pi interactions generated by the crystal packing in 1, which are absent in 2 a. The isostructural selenocyanate analogue of 2 a, [Fe(NCSe)(2)(bdpp)], 2 b, undergoes a full two-step SCO (T(1/2(1))=200 K and T(1/2(2))=125 K). Structural analyses of 1 and 2 b at a range of temperatures provide deep insight into their two-step SCO nature. Structural analysis of 1 at 25 K (1(LS-LS)), 123 K (1(LS-HS)) and 250 K (1(HS-HS)) reveals two distinct iron(II) centres at each temperature, with ordered, alternating HS and LS (low spin) sites at the intermediate plateau (IP) temperatures. In contrast, structural analysis of 2 b at 90 K (2 b(LS)), 150 K (2 b(LS/HS)) and 250 K (2 b(HS)) reveals one unique iron(II) centre at each temperature with an "averaged" LS/HS character at the IP temperature. Weak planes of diffuse scattering in the single-crystal X-ray diffraction patterns were observed for this phase at 90 and 150 K, indicating that 1D long range ordering of alternating HS/LS iron(II) centres occurs along the 1D coordination chains, but that there is no correlation between chains. The lack of observable diffuse scattering at 250 K suggests that the onset of the 1D structural ordering in the chain direction corresponds to the first step of the SCO and that this structural transition is electronically driven. The photomagnetic properties of both 1 and 2 b have been investigated and show approximately 62 and 53 % photo-excitation of a HS metastable state at low temperatures and T(LIESST) values of 55 and 49 K, respectively. Relaxation studies on the HS fraction in 2 b fitted well to a stretched exponential model with kinetic parameters indicative of weak cooperativity.  相似文献   

2.
Two new spin crossover complexes [FeL(py)(2)] (1) and [FeL(DMAP)(2)] (2) with L being a tetradentate N(2)O(2)(2-) coordinating Schiff-base-like ligand [([3,3']-[1,2-phenylenebis(iminomethylidyne)]bis(2,4-pentanedionato)(2-)-N,N',O(2),O(2)'], py = pyridine and DMAP = p-dimethylaminopyridine have been investigated using temperature-dependent susceptibility and thermogravimetric and photomagnetic measurements as well as M?ssbauer spectroscopy and X-ray structure analysis. Both complexes show a cooperative spin transition with an approximately 9 K wide thermal hysteresis loop in the case of 2 (T(1/2) upward arrow = 183 K and T(1/2) downward arrow = 174 K) and an approximately 2 K wide thermal hysteresis loop in the case of the pyridine diadduct 1 (T(1/2) upward arrow = 191 K and T(1/2) downward arrow = 189 K). The spin transition was additionally followed by different temperature-scanning calorimetry and M?ssbauer spectroscopy for 2, and a good agreement for the transition temperatures obtained with the different methods was found. Results from X-ray structure analysis indicate that the cooperative interactions are due to elastic interactions in both compounds. They are more pronounced in the case of 2 with very short intermolecular iron-iron distances of 7.2 A and several intense C-C contacts. The change of the spin state at the iron center is accompanied by a change of the O-Fe-O angle, the so-called bit of the equatorial ligand, from 108 degrees in the high-spin state to 90 degrees in the low-spin state. The reflectivity measurements of both compounds give at low temperature indication that at the sample surface the light-induced excited spin state trapping (LIESST) effect occurs. In bulk condition using a SQUID magnetometer the complex 2 displays some photomagnetic properties with an photoexcitation level of 60% and a T(LIESST) value of 53 K.  相似文献   

3.
A comprehensive study of the photomagnetic behavior of the [Fe(L222N5)(CN)2].H2O complex has been carried out. This complex is characterized by a low-spin (LS) iron(II)-metal center up to 400 K and exhibits at 10 K the well-known Light-Induced Excited Spin State Trapping (LIESST) effect. The critical LIESST temperature (T(LIESST)) has been measured to be 105 K. The kinetics of the transition from the metastable high-spin (HS) state to the low-spin state have been determined and used for reproducing the experimental T(LIESST) curve. This study represents a second example of a fully low-spin iron(II)-metal complex up to 400 K, which can be photoexcited at low temperature with an atypical long-lived metastable HS state. This underlines the preponderant role of the inner coordination sphere for stabilizing the lifetime of the photoinduced HS state.  相似文献   

4.
Reported herein are the synthesis, structural, magnetic and M?ssbauer spectroscopic characterisation of a dinuclear Fe(II) triple helicate complex [Fe(2)(L)(3)](ClO(4))(4).xH(2)O (x = 1-4), 1(H(2)O), where L is a bis-bidentate imidazolimine ligand. Low temperature structural analysis (150 K) and M?ssbauer spectroscopy (4.5 K) are consistent with one of the Fe(II) centres within the helicate being in the low spin (LS) state with the other being in the high-spin (HS) state resulting in a [LS:HS] species. However, M?ssbauer spectroscopy (295 K) and variable temperature magnetic susceptibility measurements (4.5-300 K) reveal that 1(H(2)O) undergoes a reversible single step spin crossover at one Fe(II) centre at higher temperatures resulting in a [HS:HS] species. Indeed, the T(1/2)(SCO) values at this Fe(II) centre also vary as the degree of hydration, x, within 1(H(2)O) changes from 1 to 4 and are centred between ca. 210 K-265 K, respectively. The dehydration/hydration cycle is reversible and the fully hydrated phase of 1(H(2)O) may be recovered on exposure to water vapour. This magnetic behaviour is in contrast to that observed in the related compound [Fe(2)(L)(3)](ClO(4))(4)·2MeCN, 1(MeCN), whereby fully reversible SCO was observed at each Fe(II) centre to give [LS:LS] species at low temperature and [HS:HS] species at higher temperatures. Reasons for this differing behaviour between 1(H(2)O) and 1(MeCN) are discussed.  相似文献   

5.
The photomagnetic properties of the following iron(II) complexes have been investigated: [Fe(L1)2][BF4]2, [Fe(L2)2][BF4]2, [Fe(L2)2][ClO4]2, [Fe(L3)2][BF4]2, [Fe(L3)2][ClO4]2 and [Fe(L4)2][ClO4]2 (L1 = 2,6-di{pyrazol-1-yl}pyridine; L2 = 2,6-di{pyrazol-1-yl}pyrazine; L3 = 2,6-di{pyrazol-1-yl}-4-{hydroxymethyl}pyridine; and L4 = 2,6-di{4-methylpyrazol-1-yl}pyridine). Compounds display a complete thermal spin transition centred between 200-300 K, and undergo the light-induced excited spin state trapping (LIESST) effect at low temperatures. The T(LIESST) relaxation temperature of the photoinduced high-spin state for each compound has been determined. The presence of sigmoidal kinetics in the HS --> LS relaxation process, and the observation of LITH hysteresis loops under constant irradiation, demonstrate the cooperative nature of the spin transitions undergone by these materials. All the compounds in this study follow a previously proposed linear relation between T(LIESST) and their thermal spin-transition temperatures T(1/2): T(LIESST) = T(0)- 0.3T(1/2). T(0) for these compounds is identical to that found previously for another family of iron(II) complexes of a related tridentate ligand, the first time such a comparison has been made. Crystallographic characterisation of the high- and low-spin forms, the light-induced high-spin state, and the low-spin complex [Fe(L4)2][BF4]2, are described.  相似文献   

6.
The thermal and light induced spin transition in [Fe(0.35)Ni(0.65)(mtz)(6)](ClO(4))(2) (mtz = 1-methyl-1H-tetrazole) was studied by (57)Fe M?ssbauer spectroscopy and magnetic susceptibility measurements. In addition to the spin transition of the iron(II) complexes the compound undergoes a structural phase transition. The high-temperature structure could be determined by X-ray crystallography of the isomorphous [Fe(0.25)Ni(0.75)(mtz)(6)](ClO(4))(2) complex at room temperature. The X-ray structural analysis shows this complex to be rhombohedric, space group R&thremacr;, with a = 10.865(2) ? and c = 23.65(1) ? with three molecules in the unit cell. The transition to the low-temperature structure occurs at approximately 60 K without changing the spin state of the molecules. By subsequent heating of the complex the high-temperature structure is reached again between ca. 170 and 200 K. The spin transition behavior is strongly influenced by the structural changes, and the observed spin transition curves are completely different for the high- and low-temperature phases. In the high-temperature structure a complete and gradual spin transition between 220 and 120 K (T(1/2)(gamma(HS) = 0.5) = 185 K) is detected; the high-spin (HS) state is represented by one HS doublet in the M?ssbauer spectra. In the low-temperature structure a two-step transition curve is detected in the heating mode. About 36% of the molecules show a LS (low-spin) --> HS transition between ca 50 and 75 K. Then the HS fraction stays constant up to 150 K. A further increase in the high-spin fraction is observed at temperatures above 150 K. In this structural phase the HS state is represented by two different HS doublets in the M?ssbauer spectra. The formation of metastable HS states by making use of the LIESST effect is only possible in the low-temperature structure. By excitation of the LS molecules with green light, two different HS states are populated which show very different relaxation behavior. One HS state shows a relaxation to the LS state even at 10 K; the other HS state shows a very slow HS --> LS relaxation at 60 K (within days), leading to the HS fraction corresponding to the thermal equilibrium value.  相似文献   

7.
[micro-Tris(1,4-bis(tetrazol-1-yl)butane-N4,N4')iron(II)] bis(hexafluorophosphate), [Fe(btzb)(3)](PF(6))(2), crystallizes in a three-dimensional 3-fold interlocked structure featuring a sharp two-step spin-crossover behavior. The spin conversion takes place between 164 and 182 K showing a discontinuity at about T(1/2) = 174 K and a hysteresis of about 4 K between T(1/2) and the low-spin state. The spin transition has been independently followed by magnetic susceptibility measurements, (57)Fe-M?ssbauer spectroscopy, and variable temperature far and midrange FTIR spectroscopy. The title compound crystallizes in the trigonal space group P3 (No. 147) with a unit cell content of one formula unit plus a small amount of disordered solvent. The lattice parameters were determined by X-ray diffraction at several temperatures between 100 and 300 K. Complete crystal structures were resolved for 9 of these temperatures between 100 (only low spin, LS) and 300 K (only high spin, HS), Z = 1 [Fe(btzb)(3)](PF(6))(2): 300 K (HS), a = 11.258(6) A, c = 8.948(6) A, V = 982.2(10) A(3); 100 K (LS), a = 10.989(3) A, c = 8.702(2) A, V = 910.1(4) A(3). The molecular structure consists of octahedral coordinated iron(II) centers bridged by six N4,N4' coordinating bis(tetrazole) ligands to form three 3-dimensional networks. Each of these three networks is symmetry related and interpenetrates each other within a unit cell to form the interlocked structure. The Fe-N bond lengths change between 1.993(1) A at 100 K in the LS state and 2.193(2) A at 300 K in the HS state. The nearest Fe separation is along the c-axis and identical with the lattice parameter c.  相似文献   

8.
Iron(II) complexes of Z- and E-2,6-di(1H-pyrazol-1-yl)-4-styrylpyridine (Z-2 and E-2, respectively) exhibited visible light photoisomerization from Z-2 to E-2, both in solution and in solid phases. Z-2 occupied the high-spin state over the full temperature range examined, whereas E-2 displayed a spin crossover phenomenon between 100 K and 300 K.  相似文献   

9.
New charge-transfer salts based on an unsymmetrical donor DMET [dimethyl(ethylenedithio)diselenadithiafulvalene] and metal halide anions (DMET)4MIICl4(TCE)2 (M = Mn, Co, Cu, Zn; TCE = 1,1,2-trichloroethane) have been synthesized and characterized by transport and magnetic measurements. The crystal structures of the DMET salts are isostructural, consisting of a quasi-one-dimensional stack of DMET and insulating layers containing metal halide anions and TCE. Semimetallic band structures are calculated by the tight-binding approximation. Metal-insulator transitions are observed at TMI = 25, 15, 5-20, and 13 K for M = Mn, Co, Cu, and Zn, respectively. The M = Cu salt exhibits anisotropic conduction at ambient pressure, being semiconducting in the intralayer current direction but metallic for the interplane current direction, down to T(MI). The metal-insulator transitions are suppressed under pressure. In the M = Co and Zn salts, large magnetoresistances with hysteresis are observed at low temperatures, on which Shubnikov-de Haas oscillations are superposed above 30 T. In the M = Cu salt, no hysteresis is observed but clear Shubnikov-de Haas oscillations are observed. The magnetoresistance is small and monotonic in the M = Mn salt. Paramagnetic susceptibilities of the spins of the magnetic ions are observed for the M = Mn, Co, and Cu salts with small negative Weiss temperatures of approximately 1 K. In the nonmagnetic M = Zn salt, Pauli-like pi-electron susceptibility that vanishes at TMI is observed. The ground state of the pi-electron system is understood as being a spin density wave state caused by imperfect nesting of the Fermi surfaces. In this pi-electron system, the magnetic ions of the M = Mn, Co, and Cu salts interact differently, exhibiting a variety of transport behaviors.  相似文献   

10.
[Fe(abpt)2(N(CN)2)2] (abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole) represents the first example of an iron(II) spin-crossover compound containing dicyanamide ligand, [N(CN)(2)](-), as a counterion. It shows an incomplete two-step spin transition with around 37% of HS molecules trapped in the low-temperature region when standard cooling or warming modes, i.e., 1-2 K min(-)(1), were used. The temperature, T(1/2) approximately 86 K, at which 50% of the conversion takes place, is one of the lowest temperatures observed for an iron(II) spin-crossover compound. Quenching experiments at low temperatures have shown that the incomplete character of the conversion is a consequence of slow kinetics. The quenched HS state relaxes back to the LS state displaying noticeable deviation from a single-exponential law. The rate of relaxation was evaluated in the range of temperatures 10-60 K. In the upper limit of temperatures, where thermal activation predominates, the activation energy and the pre-exponential parameter were estimated as E(a) approximately 280 cm(-)(1) and A(HL) approximately 10 s(-)(1), respectively. The lowest value of k(HL) around 1.2 x 10(-)(4) s(-)(1) (T = 10 K) was obtained in the region of temperatures where tunneling predominates. A quantitative light induced excited spin state trapping (LIESST) effect was observed, and the HS --> LS relaxation in the range of temperatures 5-52.5 K was studied. From the Arrhenius plot the two above-mentioned characteristic regimes, thermal-activated (E(a) approximately 431 cm(-)(1) and A(HL) approximately 144 s(-)(1)) and tunneling (k(HL) approximately 1.7 x 10(-)(6) s(-)(1) at 5 K), were characterized. The crystal structure was solved at room temperature. It crystallizes in the triclinic P_1 space group, and the unit cell contains a centrosymmetric mononuclear unit. Each iron atom is in a distorted octahedral environment with bond distances Fe-N(1) = 2.216(2) A, Fe-N(2) = 2.121(2) A, and Fe-N(3) = 2.160(2) A for the pyridine, triazole, and dicyanamide ligands, respectively.  相似文献   

11.
A 2D iron(II) spin crossover complex, [FeII(HLH,Me)2](ClO4)2.1.5MeCN (1), was synthesized, where HLH,Me = imidazol-4-yl-methylidene-8-amino-2-methylquinoline. 1 showed a gradual spin transition between the HS (S = 2) and LS (S = 0) states from 180 to 325 K within the first warming run from 5 to 350 K, in which 1.5MeCN is removed, and there was an abrupt spin transition at T1/2 downward arrow = 174 K in the first cooling run from 350 to 5 K. Following the first cycle, the compound showed an abrupt spin transition at T1/2 upward arrow = 185 K and T1/2 downward arrow = 174 K with 11 K wide hysteresis in the second cycle. The crystal structures of 1 were determined at 296 (an intermediate between the HS and LS states) and 150 K (LS state). The structure consists of a 2D extended structure constructed of both the bifurcated NH...O- hydrogen bonds between two ClO4- ions and two neighboring imidazole NH groups of the [FeII(HLH,Me)2]2+ cations and the pi-pi interactions between the two quinolyl rings of the two adjacent cations. Thermogravimetric analysis showed that solvent molecules are gradually eliminated even at room temperature and completely removed at 369 K. Desolvated complex 1' showed an abrupt spin transition at T1/2 upward arrow = 180 K and T1/2 downward arrow = 174 K with 6 K wide hysteresis.  相似文献   

12.
A series of cyanide bridged Fe-Co molecular squares, [Co(2)Fe(2)(CN)(6)(tp*)(2)(dtbbpy)(4)](PF(6))(2)·2MeOH (1), [Co(2)Fe(2)(CN)(6)(tp*)(2)(bpy)(4)](PF(6))(2)·2MeOH (2), and [Co(2)Fe(2)(CN)(6)(tp)(2)(dtbbpy)(4)](PF(6))(2)·4H(2)O (3) (tp = hydrotris(pyrazol-1-yl)borate, tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate, bpy =2,2'-bipyridine, dtbbpy =4,4'-di-tert-butyl-2,2'-bipyridine), were prepared by the reactions of [Fe(CN)(3)(L)](-) (L = tp or tp*) with Co(2+) and bidentate ligands (bpy or dtbbpy) in MeOH. In the molecular squares, Fe and Co ions are alternately bridged by cyanide ions, forming macrocyclic tetranuclear cores. Variable temperature X-ray structural analyses and magnetic susceptibility measurements confirmed that 1 exhibits two-step charge-transfer induced spin transitions (CTIST) centered at T(1/2) = 275 and 310 K in the solid state. The Fe and Co ions in 1 are the low-spin (LS) Fe(III) and high-spin (HS) Co(II) ions, described here in the high-temperature (HT) phase ([Fe(III)(LS2)Co(II)(HS2)]) at 330 K, while a low-temperature (LT) phase ([Fe(II)(LS2)Co(III)(LS2)]) with LS Fe(II) and Co(III) ions was dominant below 260 K. X-ray structural analysis revealed that in the intermediate (IM) phase at 298 K 1 exhibits positional ordering of [Fe(III)(LS2)Co(II)(HS2)] and [Fe(II)(LS2)Co(III)(LS2)] species with the 2:2 ratio. In photomagnetic experiments on 1, light-induced CTIST from the LT to the HT phase was observed by excitation of Fe(II) → Co(III) intervalence charge transfer (IVCT) band at 5 K and the trapped HT phase thermally relaxed to the LT phase in a two-step fashion. On the other hand, 2 and 3 are in the HT and LT phases, respectively, throughout the entire temperature range measured, and no CTIST was observed. UV-vis-NIR absorption spectral measurements and cyclic voltammetry in solution revealed that the different electronic states in 1-3 are ascribable to the destabilization of iron and cobalt ion d-orbitals by the introduction of methyl and tert-butyl groups to the ligands tp and bpy, respectively. Temperature dependence of UV-vis-NIR spectra confirmed that 1 exhibited a one-step CTIST in butyronitrile, of which T(1/2) varied from 227 to 280 K upon the addition of trifluoroacetic acid.  相似文献   

13.
In the series of polymeric spin‐crossover compounds Fe(X‐py)2[Ag(CN)2)]2 (py=pyridine, X=H, 3‐Cl, 3‐methyl, 4‐methyl, 3,4‐dimethyl), magnetic and calorimetric measurements have revealed that the conversion from the high‐spin (HS) to the low‐spin (LS) state occurs by two‐step transitions for three out of five members of the family (X=H, 4‐methyl, and X=3,4‐dimethyl). The two other compounds (X=3‐Cl and 3‐methyl) show respectively an incomplete spin transition and no transition at all, the latter remaining in the HS state in the whole temperature range. The spin‐crossover behaviour of the compound undergoing two‐step transitions is well described by a thermodynamic model that considers both steps. Calculations with this model show low cooperativity in this type of systems. Reflectivity and photomagnetic experiments reveal that all of the compounds except that with X=3‐methyl undergo light‐induced excited spin state trapping (LIESST) at low temperatures. Isothermal HS‐to‐LS relaxation curves at different temperatures support the low‐cooperativity character by following an exponential decay law, although in the thermally activated regime and for aX=H and X=3,4‐dimethyl the behaviour is well described by a double exponential function in accordance with the two‐step thermal spin transition. The thermodynamic parameters determined from this isothermal analysis were used for simulation of thermal relaxation curves, which nicely reproduce the experimental data.  相似文献   

14.
Photoisomerization of a protein bound chromophore is the basis of the light sensing and signaling responses of many photoreceptors. Z-to-E photoisomerization of the Pr Cph1Δ2 phytochrome has been investigated by polarization resolved femtosecond visible pump-infrared probe spectroscopy, which yields structural information on the Pr excited (Pr*), Pr ground, and lumi-R product states. By exhaustive search analysis, two photoreaction time constants of (4.7 ± 1.4) and (30 ± 5) ps were found. Ring D orientational change in the electronic excited state to the transition state (90° twist) has been followed in real-time. Rotation of ring D takes place in the electronically excited state with a time constant of 30 ± 5 ps. The photoisomerization is best explained by a single rotation around C(15)═C(16) methine bridge in the Pr* state and a diffusive interaction with its protein surrounding.  相似文献   

15.
A 2D layered spin crossover complex, [FeIIH3L(Me)]Cl.I3, has been synthesized from the reaction of FeIIICl3, a tripod ligand (H3LMe = tris[2-(((2-methylimidazoyl-4-yl)methylidene)amino)ethyl]amine), and NaI in methanol. The compound showed an abrupt spin transition between the HS (S = 2) and LS (S = 0) states at T(1/2) = 110 K without hysteresis. The crystal structures of the HS and LS states were determined at 180 and 90 K. A 2D layered structure is composed of NH...Cl- hydrogen bonds between the Cl- ion and three neighboring imidazole groups of [FeIIH3LMe]2+. The green light irradiation at 5 K induced the LIESST effect, and the thermal relaxation process from the HS to LS state showed a sigmoid curve at T > 55 K.  相似文献   

16.
Seven diiron(II) complexes, [Fe(II)(2)(PMAT)(2)](X)(4), varying only in the anion X, have been prepared, where PMAT is 4-amino-3,5-bis{[(2-pyridylmethyl)-amino]methyl}-4H-1,2,4-triazole and X = BF(4)(-) (1), Cl(-) (2), PF(6)(-) (3), SbF(6)(-) (4), CF(3)SO(3)(-) (5), B(PhF)(4)(-) (6), and C(16)H(33)SO(3)(-) (7). Most were isolated as solvates, and the microcrystalline ([3], [4]·2H(2)O, [5]·H(2)O, and [6]·?MeCN) or powder ([2]·4H(2)O, and [7]·2H(2)O) samples obtained were studied by variable-temperature magnetic susceptibility and Mo?ssbauer methods. A structure determination on a crystal of [2]·2MeOH·H(2)O, revealed it to be a [LS-HS] mixed low spin (LS)-high spin (HS) state dinuclear complex at 90 K, but fully high spin, [HS-HS], at 293 K. In contrast, structures of both [5]·?IPA·H(2)O and [7]·1.6MeOH·0.4H(2)O showed them to be [HS-HS] at 90 K, whereas magnetic and M?ssbauer studies on [5]·H(2)O and [7]·2H(2)O revealed a different spin state, [LS-HS], at 90 K, presumably because of the difference in solvation. None of these complexes undergo thermal spin crossover (SCO) to the fully LS form, [LS-LS]. The PF(6)(-) and SbF(6)(-) complexes, 3 and [4]·2H(2)O, appear to be a mixture of [HS-LS] and [HS-HS] at low temperature, and undergo gradual SCO to [HS-HS] on warming. The CF(3)SO(3)(-) complex [5]·H(2)O undergoes gradual, partial SCO from [HS-LS] to a mixture of [HS-LS] and [HS-HS] at T(1/2) ≈ 180 K. The B(PhF)(4)(-) and C(16)H(33)SO(3)(-) complexes, [6]·(1)/(2)MeCN and [7]·2H(2)O, are approximately [LS-HS] at all temperatures, with an onset of gradual SCO with T(1/2) > 300 K.  相似文献   

17.
A pressure-induced linkage isomerization of the cyanide anion has been observed in single crystals of a chromium(III)-iron(II) Prussian blue analogue of formula K0.4Fe4[Cr(CN)6]2.8 square1.2.16H2O (1). Upon application of pressure in the 0-1200 MPa range, the cyanide ligand rotates and becomes C-bonded to the iron(II) cations, leading to a stabilization of their diamagnetic low-spin states. The result is a decrease of magnetization and magnetic ordering temperatures from TC = 19 K at ambient pressure to 13 K at 1200 MPa. The initial magnetic properties can be restored on pressure release. The reversible movement of cyanide in the solid state can be exploited as a switch of the magnetic interaction at the molecular level.  相似文献   

18.
A comprehensive study of the magnetic and photomagnetic behaviors of cis-[Fe(picen)(NCS)(2) ] (picen = N,N'-bis(2-pyridylmethyl)1,2-ethanediamine) was carried out. The spin-equilibration was extremely slow in the vicinity of the thermal spin-transition. When the cooling speed was slower than 0.1?K min(-1), this complex was characterized by an abrupt thermal spin-transition at about 70?K. Measurement of the kinetics in the range 60-70?K was performed to approach the quasi-static hysteresis loop. At low temperatures, the metastable HS state was quenched by a rapid freezing process and the critical T(TIESST) temperature, which was associated with the thermally induced excited spin-state-trapping (TIESST) effect, was measured. At 10?K, this complex also exhibited the well-known light-induced excited spin-state-trapping (LIESST) effect and the T(LIESST) temperature was determined. The kinetics of the metastable HS states, which were generated from the freezing effect and from the light-induced excitation, was studied. Single-crystal X-ray diffraction as a function of speed-cooling and light conditions at 30?K revealed the mechanism of the spin-crossover in this complex as well as some direct relationships between its structural properties and its spin state. This spin-crossover (SCO) material represents a fascinating example in which the metastability of the HS state is in close vicinity to the thermal spin-transition region. Moreover, it is a beautiful example of a complex in which the metastable HS states can be generated, and then compared, either by the freezing effect or by the LIESST effect.  相似文献   

19.
The valence states of the nucleogenic (57)Fe arising from the nuclear disintegration of radioactive (57)Co by electron capture decay, (57)Co(EC)(57)Fe, have been studied by M?ssbauer emission spectroscopy (MES) in the (57)Co-labeled systems: [(57)Co/Co(terpy)(2)]Cl(2).5H(2)O (1), [(57)Co/Co(terpy)(2)](ClO(4))(2).(1)/(2)H(2)O (2), and [(57)Co/Mn(terpy)(2)](ClO(4))(2). (1)/(2)H(2)O (3) (terpy = 2,2':6',2' '-terpyridine). The compounds 1, 2, and 3 were labeled with ca. 1 mCi of (57)Co and were used as the M?ssbauer sources at variable temperatures between 300 K and ca. 4 K. [Fe(terpy)(2)]X(2) is a diamagnetic low-spin (LS) complex, independent of the nature of the anion X, while [Co(terpy)(2)]X(2) complexes show gradual spin transition as the temperature is varied. The Co(II) ion in 1 "feels" a somewhat stronger ligand field than that in 2; as a result, 83% of 1 stays in the LS state at 321 K, while in 2 the high-spin (HS) state dominates at 320 K and converts gradually to the LS state with a transition temperature of T(1/2) approximately 180 K. Variable-temperature M?ssbauer emission spectra for 1, 2, and 3 showed only LS-(57)Fe(II) species at 295 K. On lowering the temperature, metastable HS Fe(II) species generated by the (57)Co(EC)(57)Fe process start to grow at ca. 100 K in 1, at ca. 200 K in 2, and at ca. 250 K in 3, reaching maximum values of 0.3 at 20 K in 1, 0.8 at 50 K in 2, and 0.86 at 100 K in 3, respectively. The lifetime of the metastable HS states correlates with the local ligand field strength, and this is in line with the "inverse energy gap law" already successfully applied in LIESST relaxation studies.  相似文献   

20.
5-(3-(N-tert-Butyl-N-aminoxyl)phenyl)pyrimidine (RL = 3NITPhPyrim) forms isostructural cyclic M2(RL)2 cyclic dimers with M(hfac)2 (M = Mn, Co, Cu; hfac = hexafluoroacetylacetonate). Mn2(hfac)4(RL)2 exhibits strong antiferromagnetic Mn-RL exchange, with weak ferromagnetic exchange (0.7 cm(-1)) between Mn-RL units that is consistent with a spin polarization exchange mechanism. The magnetic moment of Co2(hfac)4(RL)2 at higher temperatures is consistent with strongly antiferromagnetic exchange within the Co-NIT units and tends toward zero below 50 K at lower magnetic fields. Cu2(hfac)4(RL)2 shows more complex behavior, with no high-temperature plateau in chiT(T) up to 300 K but a monotonic decrease down to about 100 K. The Cu(II)-nitroxide bonds decrease by 0.2-0.3 A over the same temperature range, corresponding to a change of nitroxide coordination from axial to equatorial. This thermally reversible Jahn-Teller distortion leads to a thermally induced spin state conversion from a high-spin, paramagnetic state at higher temperature to a low-spin state at lower temperature. This spin state conversion is accompanied by a reversible solid-state thermochromic change between dull yellow-brown at room temperature and green at 77 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号