共查询到20条相似文献,搜索用时 0 毫秒
1.
Liu Y Kumar A Depauw S Nhili R David-Cordonnier MH Lee MP Ismail MA Farahat AA Say M Chackal-Catoen S Batista-Parra A Neidle S Boykin DW Wilson WD 《Journal of the American Chemical Society》2011,133(26):10171-10183
Small molecule complexes with DNA that incorporate linking water molecules are rare, and the DB921-DNA complex has provided a unique and well-defined system for analysis of water-mediated binding in the context of a DNA complex. DB921 has a benzimidazole-biphenyl system with terminal amidines that results in a linear conformation that does not possess the appropriate radius of curvature to match the minor groove shape and represents a new paradigm that does not fit the classical model of minor groove interactions. To better understand the role of the bound water molecule observed in the X-ray crystal structure of the DB921 complex, synthetic modifications have been made in the DB921 structure, and the interactions of the new compounds with DNA AT sites have been evaluated with an array of methods, including DNase I footprinting, biosensor-surface plasmon resonance, isothermal titration microcalorimetry, and circular dichroism. The interaction of a key compound, which has the amidine at the phenyl shifted from the para position in DB921 to the meta position, has also been examined by X-ray crystallography. The detailed structural, thermodynamic, and kinetic results provide valuable new information for incorporation of water molecules in the design of new lead scaffolds for targeting DNA in chemical biology and therapeutic applications. 相似文献
2.
Pyrrole-imidazole (Py-Im) polyamides containing stereospecifically alpha-amino- or alpha-hydroxyl-substituted gamma-aminobutyric acid as a 5'-TG-3' recognition element were synthesized by machine-assisted Fmoc solid-phase synthesis. Their binding properties to predetermined DNA sequences containing a core binding site of 5'-TGCNCA-3'/3'-ACGN'GT-5' (N.N' = A.T, T.A, G.C, and C.G) were then systematically studied by surface plasmon resonance (SPR). SPR results revealed that the pairing of stereospecifically alpha-amino-/alpha-hydroxyl-substituted gamma-aminobutyric acids, (R or S)-alpha,gamma-diaminobutyric acid (gammaRN or gammaSN) and (R or S)-alpha-hydroxyl-gamma-aminobutyric acid (gammaRO or gammaSO), side-by-side with beta-alanine (beta) in such polyamides significantly influenced the DNA binding affinity and recognition specificity of hairpin polyamides in the DNA minor groove compared with beta/beta, beta/gamma, and gamma/beta pairings. More importantly, the polyamide Ac-Im-gammaSO-ImPy-gamma-ImPybetaPy-beta-Dp (beta/gammaSO) favorably binds to a hairpin DNA containing a core binding site of 5'-TGCNCA-3'/3'-ACGN'GT-5' (N.N' = A.T) with dissociation equilibrium constant (K(D)) of 1.9 x 10(-)(7) M over N.N' = T.A with K(D) = 3.7 x 10(-)(6) M, with a 19-fold specificity. By contrast, Ac-Im-gammaSN-ImPy-gamma-ImPybetaPy-beta-Dp (beta/gammaSN) binds to the above sequence with N.N' = A.T with K(D) = 8.7 x 10(-)(7) M over N.N' = T.A with K(D) = 8.4 x 10(-)(6) M, with a 9.6-fold specificity. The results also show that the stereochemistry of the alpha-substituent, as well as the alpha-substituent itself may greatly alter binding affinity and recognition selectivity of hairpin polyamides to different DNA sequences. Further, we carried out molecular modeling studies on the binding by an energy minimization method, suggesting that alpha-hydroxyl is very close to N3 of the 3'-terminal G to induce the formation of hydrogen bonding between hydroxyl and N3 in the recognition event of the polyamide Ac-Im-gammaSO-ImPy-gamma-ImPybetaPy-beta-Dp (beta/gammaSO) to 5'-TGCNCA-3'/3'-ACGN'GT-5' (N.N' = A.T). Therefore, SPR assays and molecular modeling studies collectively suggest that the (S)-alpha-hydroxyl-gamma-aminobutyric acid (gammaSO) may act as a 5'-TG-3' recognition unit. 相似文献
3.
Piperazino-functionalized 2',3'-BcNA and 4'-C-hydroxymethyl-DNA are appropriate molecular architectures for the introduction of basic functionalities facing the major groove and the minor groove of nucleic acid duplexes, respectively. 4'-C-(N-Methylpiperazino)methyl-DNA monomers induce significantly increased thermal stability of a DNA:DNA duplex. 相似文献
4.
Kostjukov VV Hernandez Santiago AA Rojas Rodriguez F Rosas Castilla S Parkinson JA Evstigneev MP 《Physical chemistry chemical physics : PCCP》2012,14(16):5588-5600
In the present work the decomposition of the total Gibbs free energy of ligand-DNA binding onto various physical terms was accomplished for the group of nine DNA minor groove binders (MGB ligands) differing in both structure and charge state. The decomposition protocol includes the analysis of the most complete set of physical factors known to contribute to the complexation process, viz. the net change in the number of degrees of freedom (translational, rotational, vibrations of the chemical bonds and vibrations of the ligand as a whole within the binding site), the conformational entropy, van der Waals, electrostatic and hydrophobic interactions, the polyelectrolyte contribution and the net effect of changes in the number of hydrogen bonds. All of these processes are further decomposed into the interaction with the solvent and the interaction of the ligand with DNA. The principal outcome of the decomposition is the possibility of performing a comparative analysis of the energetic contribution of various physical terms and provide an answer to the question concerning what physical factors stabilize or destabilize the complexes of MGB ligands with DNA. 相似文献
5.
Wu T Nauwelaerts K Van Aerschot A Froeyen M Lescrinier E Herdewijn P 《The Journal of organic chemistry》2006,71(15):5423-5431
A method has been developed for the synthesis of bisheaded nucleosides with thymine and adenine base moieties. We have demonstrated that, when incorporated in oligonucleotides, extrahelical A-T base interactions are possible when the bisheaded nucleosides are positioned in opposite strands of the duplex and are separated from each other by one regular base pair. 相似文献
6.
Nguyen B Lee MP Hamelberg D Joubert A Bailly C Brun R Neidle S Wilson WD 《Journal of the American Chemical Society》2002,124(46):13680-13681
A combination of biophysical techniques has been used to characterize the interaction of an antitrypanosomal agent, CGP 40215A, with DNA. The results from a broad array of methods (DNase I footprinting, surface plasmon resonance, X-ray crystallography, and molecular dynamics) indicate that this compound binds to the minor groove of AT DNA sequences. Despite its unusual linear shape that is not complementary to that of the DNA groove, a high binding affinity was observed in comparison with other similar but more curved diamidine compounds. The amidine groups at both ends of the ligand and the -NH groups on the linker are involved in extensive and dynamic H-bonds to the DNA bases. Complementary and consistent results were obtained from both the X-ray and molecular dynamics studies; both of these methods reveal direct and water-mediated H-bonds between the ligand and the DNA. 相似文献
7.
DNA-binding hairpin pyrrole-imidazole polyamides with gamma-aminobutyric acid as a turn-forming residue tolerate A.T or T.A base pairs under the turn. U-pins-polyamides with a different turn-have been synthesized and their DNA binding properties were studied. The two turn-forming residues are connected via the ring nitrogens using variable length aliphatic linkers ((CH(2))(n), n=3-6). Through optimization of the linker length and the substituents at the 2-position of the pyrrole residue on the U-turn, polyamides with G.C/C.G tolerant turns could be found, which bind to DNA in a predictable manner. 相似文献
8.
The dynamics of bound water and ions present in the minor groove of a dodecamer DNA has been decoupled from that of the long-range twisting/bending of the DNA backbone, using the minor groove binder Hoechst 33258 as a fluorescence reporter in the picosecond-resolved time window. The bound water and ions are essential structural components of the minor groove and are destroyed with the destruction of the minor groove when the dodecamer melts at high temperatures and reforms on subsequent cooling of the melted DNA. The melting and rehybridization of the DNA has been monitored by the changes in secondary structure using circular dichroism (CD) spectroscopy. The change in the relaxation dynamics of the DNA has been studied with picosecond resolution at different temperatures, following the temperature-dependent melting and rehybridization profile of the dodecamer, using time-resolved emission spectra (TRES). At room temperature, the relaxation dynamics of DNA is governed by a 40 ps (30%) and a 12.3 ns (70%) component. The dynamics of bound water and ions present in the minor groove is characterized by the 40 ps component in the relaxation dynamics of the probe bound in the minor groove of the dodecamer DNA. Analyses of the TRES taken at different temperatures show that the contribution of this component decreases and ultimately vanishes with the destruction of the minor groove and reappears again with the reformation of the groove. The dynamical behavior of bound water molecules and ions of a genomic DNA (from salmon testes) at different temperatures is also found to be consistent with that of the dodecamer. The longer component of approximately 10 ns in the DNA dynamics is found to be associated with the long-range bending/twisting of the DNA backbone and the associated counterions. The transition from bound water to free water at the DNA surface, indicative of the change in the hydration number associated with each base pair, has also been ascertained in the case of the genomic DNA at different temperatures by employing densimetric and acoustic techniques. 相似文献
9.
The interactions of [Pt(en)Cl(ACRAMTU-S)](NO3)2 (PT-ACRAMTU, en = ethane-1,2-diamine, ACRAMTU = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea) with adenine in DNA have been studied using a combination of analytical and high-resolution structural methods. For the first time, a cytotoxic platinum(II) complex has been demonstrated to form adducts in the minor groove of DNA through platination of the adenine-N3 endocyclic nitrogen. An acidic depurination assay was developed that allowed the controlled and selective (pH 2, 60 degrees C, 12 h) release of platinum-modified adenine from drug-treated nucleic acid samples. From the digested mixtures, three adducts were isolated by semipreparative reverse phase high-performance liquid chromatography and studied by electrospray ionization mass spectrometry (in-line LC-MS), variable-pH 1H NMR spectroscopy, and, where applicable, X-ray crystallography. The three species were identified as the N7 (A-I), N3 (A-II), and N1 (A-III) linkage isomers of [Pt(en)(ACRAMTU-S)(adenine)]3+ (A). Incubations carried out with the single- and double-stranded model sequences, d(TA)5 and d(TA)15, as well as native DNA indicate that the adduct profiles (A-I:A-II:A-IIIratios) are sensitive to the nature of the nucleic acid template. A-II was found to be a double-strand specific adduct. The crystal structure of this adduct has been determined, providing ultimate evidence for the N3 connectivity of platinum. A-II crystallizes in the triclinic space group P in the form of centrosymmetric dimers, {[Pt(en)(ACRAMTU-S)(adenine-N3)]2}6+. The cations are stabilized by a combination of adenine-adenine base pairing (N6...N1 2.945(5) A) and mutual acridine-adenine base stacking. Tandem mass spectra and 1H chemical shift anomalies indicate that this type of self-association is not merely a crystal packing effect but persists in solution. The monofunctional platination of adenine at its N7, N3, and N1 positions in a significant fraction of adducts breaks a longstanding paradigm in platinum-DNA chemistry, the requirement for nucleophilic attack of guanine-N7 as the principal step in cross-link formation. The biological consequences and potential therapeutic applications of the unique base and groove recognition of PT-ACRAMTU are discussed. 相似文献
10.
Blanco JB Vázquez ME Martinez-Costas J Castedo L Mascareñas JL 《Chemistry & biology》2003,10(8):713-722
Attachment of a slightly modified basic region of a bZIP protein (GCN4) to a distamycin-related tripyrrole provides a bivalent system capable of binding with high affinity to specific DNA sequences. Appropriate adjustment of the linker between the two units has led to a hybrid that binds a 9 base-pair-long DNA site (TTTTATGAC) with low nanomolar affinity at 4 degrees C. Circular dichroism and gel retardation studies indicate that the binding occurs by simultaneous insertion of the bZIP basic region into the DNA major groove and the tripyrrole moiety into the minor groove of the flanking sequence. Analysis of hybrids bearing alternative linkers revealed that tight, specific binding is strongly dependent on the length and nature of the connecting unit. 相似文献
11.
Munde M Ismail MA Arafa R Peixoto P Collar CJ Liu Y Hu L David-Cordonnier MH Lansiaux A Bailly C Boykin DW Wilson WD 《Journal of the American Chemical Society》2007,129(44):13732-13743
The classical model of DNA minor groove binding compounds is that they should have a crescent shape that closely fits the helical twist of the groove. Several compounds with relatively linear shape and large dihedral twist, however, have been found recently to bind strongly to the minor groove. These observations raise the question of how far the curvature requirement could be relaxed. As an initial step in experimental analysis of this question, a linear triphenyl diamidine, DB1111, and a series of nitrogen tricyclic analogues were prepared. The goal with the heterocycles is to design GC binding selectivity into heterocyclic compounds that can get into cells and exert biological effects. The compounds have a zero radius of curvature from amidine carbon to amidine carbon but a significant dihedral twist across the tricyclic and amidine-ring junctions. They would not be expected to bind well to the DNA minor groove by shape-matching criteria. Detailed DNase I footprinting studies of the sequence specificity of this set of diamidines indicated that a pyrimidine heterocyclic derivative, DB1242, binds specifically to a GC-rich sequence, -GCTCG-. It binds to the GC sequence more strongly than to the usual AT recognition sequences for curved minor groove agents. Other similar derivatives did not exhibit the GC specificity. Biosensor-surface plasmon resonance and isothermal titration calorimetry experiments indicate that DB1242 binds to the GC sequence as a highly cooperative stacked dimer. Circular dichroism results indicate that the compound binds in the minor groove. Molecular modeling studies support a minor groove complex and provide an inter-compound and compound-DNA hydrogen-bonding rational for the unusual GC binding specificity and the requirement for a pyrimidine heterocycle. This compound represents a new direction in the development of DNA sequence-specific agents, and it is the first non-polyamide, synthetic compound to specifically recognize a DNA sequence with a majority of GC base pairs. 相似文献
12.
Takashi Fukumori Yasutaka Morita Eiichi Tamiya Kenji Yokoyama 《Analytical sciences》2003,19(1):181-183
A novel molecular tool for double-stranded (ds) DNA detection using synthetic peptide is described. The peptide was designed based on the DNA binding domain of the lambda phage CRO repressor (CRO). The designed peptides contain helix-turn-helix (HTH), which is DNA binding motif. A cyclic peptide and a mutant peptide based on CRO were also designed, and the resulting affinity for dsDNA was increased. Furthermore, native amino acids of the peptide were replaced with arginine to increase the affinity for dsDNA. The affinity of these peptides for DNA binding was assessed by surface plasmon resonance (SPR) technique. 相似文献
13.
Anthony NG Huchet G Johnston BF Parkinson JA Suckling CJ Waigh RD Mackay SP 《Journal of chemical information and modeling》2005,45(6):1896-1907
The sequence selectivity of small molecules binding to the minor groove of DNA can be predicted by "in silico footprinting". Any potential ligand can be docked in the minor groove and then moved along it using simple simulation techniques. By applying a simple scoring function to the trajectory after energy minimization, the preferred binding site can be identified. We show application to all known noncovalent binding modes, namely 1:1 ligand:DNA binding (including hairpin ligands) and 2:1 side-by-side binding, with various DNA base pair sequences and show excellent agreement with experimental results from X-ray crystallography, NMR, and gel-based footprinting. 相似文献
14.
Liu Y Collar CJ Kumar A Stephens CE Boykin DW Wilson WD 《The journal of physical chemistry. B》2008,112(37):11809-11818
Given the increasing significance of diamidines as DNA-targeted therapeutics and biotechnology reagents, it is important to establish the variations in thermodynamic quantities that characterize the interactions of closely related compounds to different sequence AT binding sites. In this study, an array of methods including biosensor-surface plasmon resonance (SPR), isothermal titration microcalorimetry (ITC), circular dichroism (CD), thermal melting (Tm) and molecular modeling have been used to characterize the binding of dicationic diamidines related to DB75 (amidine-phenyl-furan-phenyl-amidine) with alternating and nonalternating AT sequences. Conversion of the central furan of DB75 to other similar groups, such as thiophene or selenophene, can yield compounds with increased affinity and sequence binding selectivity for the minor groove. Calorimetric measurements revealed that the thermodynamic parameters (Delta G, Delta H, Delta S) that drive diamidine binding to alternating and nonalternating oligomers can be quite different and depend on both DNA sequence and length. Small changes in a compound can have major effects on DNA interactions. By choosing an appropriate central group it is possible to "tune" the shape of the molecule to match DNA for enhanced affinity and sequence recognition. 相似文献
15.
A nucleoside with two nucleobases, a so-called double-headed nucleoside, 5'(S)-C-(thymine-1-ylmethyl)thymidine 3, is synthesised and incorporated into oligonucleotides. The additional nucleobase is hereby positioned in the minor groove of the duplexes, which are formed with complementary DNA and RNA-sequences. Slight thermal destabilisation of these duplexes as compared to unmodified duplexes is observed. With other target sequences forming bulged duplexes or three-way junctions, no additional influence of the additional base on the thermal stability is observed. On the other hand, a base-base stacking interaction and subsequent stabilisation is observed when two double-headed nucleotide moieties are positioned in two complementary DNA-sequences forming a DNA-zipper motif. 相似文献
16.
17.
Karagiannis TC Lobachevsky PN Martin RF 《Journal of photochemistry and photobiology. B, Biology》2006,83(3):195-204
Previous studies have described UVA-induced DNA strand breakage at the binding sites of iodinated DNA minor groove binding bisbenzimidazoles. The DNA breakage, presumably mediated by the carbon-centred ligand radical produced by photodehalogenation, was also shown to be cytotoxic. The earlier studies included a comparison of three ligand isomers, designated ortho-, meta- and para-iodoHoechst, and the efficiency of photo-induction of strand breaks in plasmid DNA proved to be much higher for the ortho-isomer. We have now extended the comparison of the three isomers with respect to photo-induced cytotoxicity in K562 cells. Although the relationship between the extent of nuclear uptake and the concentration of the ligand in the medium was similar for the three isomers, assay of in situ dehalogenation in drug-treated cells indicated that the apparent cross-section for dehalogenation of the ortho-isomer was greater than 5-fold higher than that for the meta- and para-isomers. Also, analysis of clonogenic survival data showed that the dehalogenation event associated with ortho-iodoHoechst was a more efficient mediator of UVA-induced cytotoxicity in K562 cells than that for meta- or para-iodoHoechst. The number of dehalogenation events associated with 50% cell-kill for ortho-iodoHoechst (1.23+/-0.04 x 10(4)) was less than that for the para- (3.92+/-0.29 x 10(4)) and meta- (11.6+/-0.90 x 10(4)) isomers. Thus it is concluded that the photopotency of ortho-iodoHoechst, which is an important feature in the context of its potential use in clinical phototherapy, is due not only to more efficient UVA-mediated dehalogenation of the ligand, but also to greater cytotoxic potency per dehalogenation event. 相似文献
18.
Xiu-Jun Wang Ming-Li Yang Lan-Ping Zhang Tong Yao Cheng Chen Lian-Gang Mao Yin Wang Jie Wu 《中国化学快报》2014,25(4):589-592
A new series of bis-benzimidazole derivatives were designed and synthesized.In vitro cytotoxicity evaluation showed that these compounds exhibited high activity against the selected tumor cells.Among them,compound 9 owned the best potential,its IC_(50) values being 5.95 μmol/L(mononuclear tumor cell line(U937)) and 5.58 μmol/L(cervical cancer cell(HeLa)).Fluorescence and UV-vis studies showed that compound 9 could bind into the minor groove of DNA. 相似文献
19.
Pu Guo Abdelbasset A. Farahat Ananya Paul David W. Boykin W. David Wilson 《Chemical science》2021,12(48):15849
This report describes a breakthrough in a project to design minor groove binders to recognize any sequence of DNA. A key goal is to invent synthetic chemistry for compound preparation to recognize an adjacent GG sequence that has been difficult to target. After trying several unsuccessful compound designs, an N-alkyl-benzodiimidazole structure was selected to provide two H-bond acceptors for the adjacent GG-NH groups. Flanking thiophenes provide a preorganized structure with strong affinity, DB2831, and the structure is terminated by phenyl-amidines. The binding experimental results for DB2831 with a target AAAGGTTT sequence were successful and include a high ΔTm, biosensor SPR with a KD of 4 nM, a similar KD from fluorescence titrations and supporting competition mass spectrometry. MD analysis of DB2831 bound to an AAAGGTTT site reveals that the two unprotonated N of the benzodiimidazole group form strong H-bonds (based on distance) with the two central G-NH while the central –CH of the benzodiimidazole is close to the –C O of a C base. These three interactions account for the strong preference of DB2831 for a -GG- sequence. Surprisingly, a complex with one dynamic, interfacial water is favored with 75% occupancy.This report describes a breakthrough in a project to design minor groove binders to recognize any sequence of DNA. 相似文献
20.
Aimée Tomlinson Brian Frezza Matthew Kofke Miaomiao Wang Bruce A. Armitage David Yaron 《Chemical physics》2006
3,3-Diethylthiadicarbocyanine (DiSC2(5)) is a monocationic dye which forms cofacial dimers that insert into the minor groove of DNA [J. Seifert, R. Conner, S. Kushon, M. Wang, B. Armitage, J. Am. Chem. Soc. 121 (1999) 2987]. These dyes self-assemble into long helical aggregates in AT-rich regions with the dimers aligned in an end-to-end fashion. A model is presented that allows for the construction of large helical aggregates with continuously variable structural parameters. The spectra or excited states are computed using a direct intermediate neglect of differential overlap (INDO) single configuration interaction (SCI) method. Results are reported for both H- and J-type aggregates ranging in size from 2 to 6 dimers. A more approximate model based on transition charge densities enables calculations of larger aggregates. These models are used to derive structural parameters of both H- and J-type aggregates from the available spectral data, resulting in a new structural model for J-type aggregation in these systems. 相似文献