首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural diversity of natural products and their derivatives have long contributed to the development of new drugs. However, the difficulty in obtaining compounds bearing skeletally novel structures has recently led to a decline of pharmaceutical research into natural products. This paper reports the construction of a meroterpenoid-like library containing 25 compounds with diverse molecular scaffolds obtained from diversity-enhanced extracts. This method constitutes an approach for increasing the chemical diversity of natural-product-like compounds by combining natural product chemistry and diversity-oriented synthesis. Extensive pharmacological screening of the library revealed promising compounds for anti-osteoporotic and anti-lymphoma/leukemia drugs. This result indicates that the use of diversity-enhanced extracts is an effective methodology for producing chemical libraries for the purpose of drug discovery.  相似文献   

2.
A fundamental component for success in drug discovery is the ability to assemble and screen compounds that encompass a broad swath of biologically relevant chemical‐diversity space. Achieving this goal in a natural‐products‐based setting requires access to a wide range of biologically diverse specimens. For this reason, we introduced a crowdsourcing program in which citizen scientists furnish soil samples from which new microbial isolates are procured. Illustrating the strength of this approach, we obtained a unique fungal metabolite, maximiscin, from a crowdsourced Alaskan soil sample. Maximiscin, which exhibits a putative combination of polyketide synthase (PKS), non‐ribosomal peptide synthetase (NRPS), and shikimate pathway components, was identified as an inhibitor of UACC‐62 melanoma cells (LC50=0.93 μM ). The metabolite also exhibited efficacy in a xenograft mouse model. These results underscore the value of building cooperative relationships between research teams and citizen scientists to enrich drug discovery efforts.  相似文献   

3.
Microbial natural products are an invaluable resource for the biotechnological industry. Genome mining studies have highlighted the huge biosynthetic potential of fungi, which is underexploited by standard fermentation conditions. Epigenetic effectors and/or cultivation-based approaches have successfully been applied to activate cryptic biosynthetic pathways in order to produce the chemical diversity suggested in available fungal genomes. The addition of Suberoylanilide Hydroxamic Acid to fermentation processes was evaluated to assess its effect on the metabolomic diversity of a taxonomically diverse fungal population. Here, metabolomic methodologies were implemented to identify changes in secondary metabolite profiles to determine the best fermentation conditions. The results confirmed previously described effects of the epigenetic modifier on the metabolism of a population of 232 wide diverse South Africa fungal strains cultured in different fermentation media where the induction of differential metabolites was observed. Furthermore, one solid-state fermentation (BRFT medium), two classic successful liquid fermentation media (LSFM and YES) and two new liquid media formulations (MCKX and SMK-II) were compared to identify the most productive conditions for the different populations of taxonomic subgroups.  相似文献   

4.
Natural product-like libraries represent an effort to combine the attractive features of natural products and combinatorial libraries for high-throughput screening. Three approaches to natural product-like library design are discussed: (1) Libraries based on core scaffolds from individual natural products, (2) libraries of diverse structures with general structural characteristics of natural products, and (3) libraries of diverse structures based on specific structural motifs from classes of natural products. Examples of successful applications in discovery screening are described for each category. These studies highlight the exciting potential of natural product-like libraries in both chemical biology and drug discovery.  相似文献   

5.
Herbal medicine is widely applied for clinical use in East Asia and other countries. However, unclear correlation between its complex chemical composition and bioactivity prevents its application in the West. In the present study, a stepwise causal adjacent relationship discovery algorithm has been developed to study correlation between composition and bioactivity of herbal medicine and identify active components from the complex mixture. This approach was successfully applied in discovering active constituents from mixed extracts of Radix Salviae miltiorrhizae and Cortex Moutan. Moreover, advantage of the present approach compared with bioassay-guided isolation was demonstrated by its application on a typical herbal drug. The current work offers a new way to virtually screen active components of herbal medicine, and it might be helpful to accelerate the process of new drug discovery from natural products.  相似文献   

6.
Nature has evolved to produce unique and diverse natural products that possess high target affinity and specificity. Natural products have been the richest sources for novel modulators of biomolecular function. Since the chemical synthesis of urea by Wöhler, organic chemists have been intrigued by natural products, leading to the evolution of the field of natural product synthesis over the past two centuries. Natural product synthesis has enabled natural products to play an essential role in drug discovery and chemical biology. With the introduction of novel, innovative concepts and strategies for synthetic efficiency, natural product synthesis in the 21st century is well poised to address the challenges and complexities faced by natural product chemistry and will remain essential to progress in biomedical sciences.  相似文献   

7.
The diversification of natural products to expand biologically relevant chemical space for drug discovery can be achieved by combining complementary bioprocessing and chemical transformations. Herein, genetically engineered Escherichia coli fermentation to produce amorphadiene and valencene was combined with metal-free photocatalysis transformations to further access nootkatone, cis-nootkatol and two hydration derivatives. In fermentation, using a closed, anaerobic condition avoided the use of organic overlay, increased the productivity, and simplified the work-up process. Metal-free photocatalysis hydration and allylic C−H oxidation were designed and implemented to make the whole process greener. It was shown that the anti-Markovnikov selectivity of photocatalyzed alkene hydration could be reversed by stereo-electronic and steric effects existing in complex natural products. The combination of bioprocessing and photocatalysis may provide an efficient and greener way to expand the chemical space for pharmaceutical, flavor and fragrance industry.  相似文献   

8.
The high-throughput screening and drug discovery paradigm has necessitated a change in preparation of natural product samples for screening programs. In an attempt to improve the quality of marine natural products samples for screening, several fractionation strategies were investigated. The final method used HP20SS as a solid support to effectively desalt extracts and fractionate the organic components. Additionally, methods to integrate an automated LCMS fractionation approach to shorten discovery time lines have been implemented.  相似文献   

9.
A direct affinity screening – mass spectrometry assay, coupled to liquid chromatography, is presented as a tool for natural product drug discovery. Using the assay, fractionated extracts from a Caribbean gorgonian coral were shown to contain a new chemical entity (NCE) which binds to a mimic of the Gram positive bacterial cell wall (lysine–d-alanine–d-alanine). Conditions for observation of a specific noncovalent complex between the NCE and the target mimic using electrospray ionization-mass spectrometry were validated in a series of positive and negative control experiments, which featured flow injection analysis-based titrations. While the structural identity of the NCE could not be determined due to limited sample quantities, this work provides proof-of-principle for such an approach to potentially accelerate drug discovery from natural product sources.  相似文献   

10.
The Candida albicans Fitness Test, a whole-cell screening platform, was used to profile crude fermentation extracts for novel antifungal natural products with interesting mechanisms of action. An extract with intrinsic antifungal activity from the fungus Fusarium larvarum displayed a Fitness Test profile that strongly implicated mRNA processing as the molecular target responsible for inhibition of fungal growth. Isolation of the active components from this sample identified a novel class of isoxazolidinone-containing natural products, which we have named parnafungins. These natural products were isolated as an interconverting mixture of four structural- and stereoisomers. The isomerization of the parnafungins was due to a retro-Michael ring-opening and subsequent reformation of a xanthone ring system. This interconversion was blocked by methylation of an enol moiety. Structure elucidation of purified parnafungin derivatives was accomplished by X-ray crystallography and NMR analysis. The biochemical target of these natural products has been identified as the fungal polyadenosine polymerase. Parnafungins demonstrated broad spectrum antifungal activity with no observed activity against gram-positive or gram-negative bacteria. The intact isoxazolidinone ring was required for antifungal activity. In addition, the natural products were efficacious in a mouse model of disseminated candidiasis.  相似文献   

11.
As traditional small-molecule drug discovery programs focus on a relatively narrow range of chemical space, most human proteins are viewed as unreachable targets. Consequently, there is a strong interest in expanding the chemical space in drug discovery beyond traditional small molecules. Here, a strategy for the preparation of a broad natural-product-like macrocyclic library by using the tandem allylic oxidation/oxa-conjugate addition and macrocyclization reactions is reported. Cheminformatic analyses demonstrate that this tetrahydropyran-containing macrocyclic library shows a significant overlap with natural products in the chemical space. This approach can be used for designing libraries that may probe more deeply into natural-product-like space.  相似文献   

12.
Due to pressure from combinatorial chemistry and the streamlining of the drug discovery process through automated high-throughput screening technologies, pharmaceutically based natural products programs are under increasing scrutiny. However by taking advantages of technologies originally developed for high-throughput screening and combinatorial chemistry and applying them to processes considered as bottlenecks in classical natural products chemistry (purification, structure elucidation, sample availability) it is our opinion that natural products can still contribute to the effective discovery of novel bioactive and pharmaceutically relevant metabolites. We describe here several such strategies that if universally implemented, will demonstrate i) whether chemical diversity is truly being accessed, ii) that novel metabolites can be formatted in a manner appropriate for modern screening paradigms, and iii) that natural products can be rapidly identified not only for novelty and pharmaceutical relevance but to assess their true biological origin.  相似文献   

13.
Fungal meroterpenoids are a diverse group of hybrid natural products with impressive structural complexity and high potential as drug candidates. In this work, we evaluate the promiscuity of the early structure diversity-generating step in fungal meroterpenoid biosynthetic pathways: the multibond-forming polyene cyclizations catalyzed by the yet poorly understood family of fungal meroterpenoid cyclases. In total, 12 unnatural meroterpenoids were accessed chemoenzymatically using synthetic substrates. Their complex structures were determined by 2D NMR studies as well as crystalline-sponge-based X-ray diffraction analyses. The results obtained revealed a high degree of enzyme promiscuity and experimental results which together with quantum chemical calculations provided a deeper insight into the catalytic activity of this new family of non-canonical, terpene cyclases. The knowledge obtained paves the way to design and engineer artificial pathways towards second generation meroterpenoids with valuable bioactivities based on combinatorial biosynthetic strategies.  相似文献   

14.
Approval of bortezomib has validated ubiquitin-proteasome pathway as an important target for treatment of haematological malignancies. However, clinical shortcomings of bortezomib, a covalent peptide proteasome inhibitor, has prompted a paradigm shift in anti-proteasome drug discovery towards development of non-peptidic inhibitors and targeting of upstream ubiquitin system which has drawn traction for interdisciplinary forays. It is being widely recognized that natural products provide valuable leads in the discovery of potent, chemically diverse, non-peptidic inhibitors of 20S proteasome and of key enzymes involved in ubiquitination machinery. As a result, total synthesis of natural, non-peptidic inhibitors of ubiquitin-proteasome pathway has emerged as a critical interlink between organic synthesis, medicinal chemistry, biochemical profiling and drug discovery. An up-to-date account of contextual synthetic challenges, strategies and accomplishments as well as mapping of the chemical diversity space around the natural scaffolds has been captured in this review.  相似文献   

15.
Enzymatic glucosylation of unnatural products by natural glycosyltransferases (GTs) has great potential in creating novel and bioactive glucosides. A new GT (AaGT3) from Aloe arborescens exhibited catalytic promiscuity and high efficiency to diverse unnatural naphthols. By combing the substrate flexibility and catalytic reversibility of AaGT3, a cost-effective enzymatic approach to novel and bioactive unnatural glucosides was established. These studies indicate the significant potential of promiscuous natural GTs in synthesis of unnatural bioactive glucosides in drug discovery.  相似文献   

16.
Bacterial natural products in general, and non-ribosomally synthesized peptides in particular, are structurally diverse and provide us with a broad range of pharmaceutically relevant bioactivities. Yet, traditional natural product research suffers from rediscovering the same scaffolds and has been stigmatized as inefficient, time-, labour- and cost-intensive. Combinatorial chemistry, on the other hand, can produce new molecules in greater numbers, cheaper and in less time than traditional natural product discovery, but also fails to meet current medical needs due to the limited biologically relevant chemical space that can be addressed. Consequently, methods for the high throughput generation of new natural products would offer a new approach to identifying novel bioactive chemical entities for the hit to lead phase of drug discovery programs. As a follow-up to our previously published proof-of-principle study on generating bipartite type S non-ribosomal peptide synthetases (NRPSs), we now envisaged the de novo generation of non-ribosomal peptides (NRPs) on an unreached scale. Using synthetic zippers, we split NRPSs in up to three subunits and rapidly generated different bi- and tripartite NRPS libraries to produce 49 peptides, peptide derivatives, and de novo peptides at good titres up to 145 mg L−1. A further advantage of type S NRPSs not only is the possibility to easily expand the created libraries by re-using previously created type S NRPS, but that functions of individual domains as well as domain-domain interactions can be studied and assigned rapidly.  相似文献   

17.
Natural products have proven to be a rich source of molecular architectures for drugs. Here, an integrated approach to natural product screening is proposed, which uncovered eight new natural product scaffolds for KRAS—the most frequently mutated oncogenic driver in human cancers, which has remained thus far undrugged. The approach combines aspects of virtual screening, fragment-based screening, structure-activity relationships (SAR) by NMR, and structure-based drug discovery to overcome the limitations in traditional natural product approaches. By using our approach, a new “snugness of fit” scoring function and the first crystal-soaking system of the active form of KRASG12D, the protein–ligand X-ray structures of a tricyclic indolopyrrole fungal alkaloid and an indoloisoquinolinone have been successfully elucidated. The natural product KRAS hits discovered provide fruitful ground for the optimization of highly potent natural-product-based inhibitors of the active form of oncogenic RAS. This integrated approach for screening natural products also holds promise for other “undruggable” targets.  相似文献   

18.
Natural products represents an important source of new lead compounds in drug discovery research. Several drugs currently used as therapeutic agents have been developed from natural sources; plant sources are specifically important. In the past few decades, pharmaceutical companies demonstrated insignificant attention towards natural product drug discovery, mainly due to its intrinsic complexity. Recently, technological advancements greatly helped to address the challenges and resulted in the revived scientific interest in drug discovery from natural sources. This review provides a comprehensive overview of various approaches used in the selection, authentication, extraction/isolation, biological screening, and analogue development through the application of modern drug-development principles of plant-based natural products. Main focus is given to the bioactivity-guided fractionation approach along with associated challenges and major advancements. A brief outline of historical development in natural product drug discovery and a snapshot of the prominent natural drugs developed in the last few decades are also presented. The researcher’s opinions indicated that an integrated interdisciplinary approach utilizing technological advances is necessary for the successful development of natural products. These involve the application of efficient selection method, well-designed extraction/isolation procedure, advanced structure elucidation techniques, and bioassays with a high-throughput capacity to establish druggability and patentability of phyto-compounds. A number of modern approaches including molecular modeling, virtual screening, natural product library, and database mining are being used for improving natural product drug discovery research. Renewed scientific interest and recent research trends in natural product drug discovery clearly indicated that natural products will play important role in the future development of new therapeutic drugs and it is also anticipated that efficient application of new approaches will further improve the drug discovery campaign.  相似文献   

19.
The chemical diversity of nature has tremendous potential for the discovery of molecular probes and medicinal agents. However, sensitivity of HTS assays to interfering components of crude extracts derived from plants, and macro- and microorganisms has curtailed their use in lead discovery. Here, we describe a process for leveraging the concentration-response curves obtained from quantitative HTS to improve the initial selection of "actives" from a library of partially fractionated natural product extracts derived from marine actinomycetes and fungi. By using pharmacological activity, the first-pass CRC paradigm improves the probability that labor-intensive subsequent steps of reculturing, extraction, and bioassay-guided isolation of active component(s) target the most promising strains and growth conditions. We illustrate how this process identified a family of fungal metabolites as potent inhibitors of firefly luciferase, subsequently resolved in molecular detail by X-ray crystallography.  相似文献   

20.
The use of biocatalysts for fragment-based drug discovery has yet to be fully investigated, despite the promise enzymes hold for the synthesis of poly-functional, non-protected small molecules. Here we analyze products of the biocatalysis literature to demonstrate the potential for not only fragment generation, but also the enzyme-mediated elaboration of these fragments. Our analysis demonstrates that biocatalytic products can readily populate 3D chemical space, offering diverse catalytic approaches to help generate new, bioactive molecules.

This perspective discusses how biocatalysis could play an important role in the future fragment-based drug discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号