首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the last six years through a Department of Energy Radiochemistry Education Award Program (REAP) we have developed a completely web-based course in nuclear and radiochemistry given at the University of Texas at Austin. This course has had nuclear and radiation engineering and chemistry graduate students. While the course also has an extensive laboratory component only the lectures are web based. The lectures begin with a historical introduction of radiochemistry followed by two movies on Madame Curie. This is followed by the usual lectures on radioactivity, fundamental properties, radioactive decay, decay modes, and nuclear reactions. As section on radioactive waste management and nuclear fuel cycle is also presented. Lectures in neutron activation analysis, geo- and cosmochemistry, and plutonium chemistry have also been developed. All lectures are in power point with many animations and a significant number of solved problems. All students are required to make a short oral presentation on some aspect of nuclear and radiochemistry in their research or a chosen topic.  相似文献   

2.
Summary We present the outline of a comprehensive website based offering of a basic graduate level or senior undergraduate level course in nuclear and radiochemistry. This password protected course follows classical pedagogical treatment of the subject. However, it has been augmented by the implementation of Flash animations to better teach basic nuclear and radiochemistry concepts. As well, the website is linked to many Internet related resources. All lectures and problems are presented in Microsoft Power Point format with Flash animations incorporated. A series of six experiments in radiochemistry, also offered in the course is available in a downloadable Microsoft Word format.  相似文献   

3.
Summary Given the mismatch between supply of and demand for nuclear scientists, education in nuclear and radiochemistry has become a serious concern. The Nuclear and Radiochemistry in Chemistry Education (NRIChEd) Curriculum Project was undertaken to reintroduce the topics normally covered in a one-semester radiochemistry course into the traditional courses of a four-year chemistry major: general chemistry, organic chemistry, quantitative and instrumental analysis, and physical chemistry. NRIChEd uses a three-pronged approach that incorporates radiochemistry topics when related topics in the basic courses are covered, presents special topics of general interest as a vehicle for teaching nuclear and radiochemistry alongside traditional chemistry, and incorporates the use of non-licensed amounts of radioactive substances in demonstrations and student laboratory experiments. This approach seeks not only to reestablish nuclear science in the chemistry curriculum, but to use it as a tool for elucidating fundamental and applied aspects of chemistry as well. Moreover, because of its relevance in many academic areas, nuclear science enriches the chemistry curriculum by encouraging interdisciplinary thinking and problem solving.  相似文献   

4.
In recognition of the 1997 anniversary of the first century of radiochemistry, a review is made of its unique contribution to the emergence of nuclear science, its development from the use of very basic chemical techniques initially to a battery of more sophisticated procedures, and its changing role as it has become widely applied in many fields of science. Synergistically, these fields have been able to develop with the aid of radiochemistry while at the same time, radiochemical methods developed to meet the demands of such applications. Among these, during the second half of the century, has been radiochemistry applied to quantitative chemical analysis: RAA or, nuclear analytical chemistry, and typical examples of its use in the authors' laboratory are described, including some recent INAA results on development of novel ‘activable’ tracer coding for forensic use with specialized and high security materials. The specific contributions, during the century, of Japanese pioneers in radiochemistry are also cited.  相似文献   

5.
Summary A Summer School in Nuclear Chemistry sponsored by the U. S. Department of Energy and the American Chemical Society has been held at San José State University for the past 20 years. The intent of the program is to introduce outstanding college students to the field of nuclear and radiochemistry with the goal that some of these students will consider careers on nuclear science. The program features radiochemistry experiments along with radiation safety training, guest lectures by well known nuclear scientists and field trips to nuclear chemistry facilities in the San Francisco area.  相似文献   

6.
Summary Much concern has been expressed lately about the decline of teaching and research activities in radiochemistry in many countries, as was discussed in an IAEA Technical Meeting in Antalya, Turkey, in 2002, and also at MTAA-11 in Guildford, UK. In the IAEA meeting, a survey was presented about the current situation in different regions of the world (Eastern Europe, East and West Asia, Africa, North America and Latin America) by experts of each region. In the case of Brazil, which has nuclear research reactors and also cyclotrons in operation, the teaching and research activities in radiochemistry are concentrated in the three main institutes of the Brazilian Nuclear Energy Commission, in the University of S?o Paulo and in other universities, in different regions of the country. In the present paper, a closer look is given to the radiochemistry teaching and research activities that are being conducted nowadays in Brazil, comprising: number of radiochemistry courses and students being formed, main research areas being conducted, as well as research and production of radioisotopes for nuclear medicine, using nuclear reactors and cyclotrons.  相似文献   

7.
A large fraction of the potential graduate students in chemistry come from undergraduate colleges. The exposure of these students to the field of nuclear and radiochemistry is limited by the fact that few professionals actively involved in the field teach at these schools. There is also increasing competition for the limited number of chemistry students by other chemical specializations. Innovative approaches such as a short course to introduce students to nuclear and radiochemistry and some of the needs for undergraduate teaching are discussed.  相似文献   

8.
Over the last three years we have developed a very robust nuclear and radiochemistry program at The University of Texas at Austin. The cornerstone of support was the DOE Radiochemistry Educational Award Program (REAP) that was awarded from 2002–2005. A second award for the period of 2005–2008 was just received. This award has enabled us to support many educational activities from vanguard classroom instruction, to laboratory enhancements, to research activities at the graduate and undergraduate levels. Both traditional radiochemistry and advanced topics in nuclear instrumentation have been supported. Various DOE university programs, national lab funding and IAEA fellowship grants, have allowed the Nuclear and Radiation Engineering Program at the University of Texas to be at the forefront of nuclear and radiochemistry educational and research activities and help secure the next generation of needed expertise.  相似文献   

9.
在我国核能快速发展的新形势下,新型核能资源的开发、乏燃料后处理、放射性废物处理与处置等核燃料循环化学研究日益活跃。随着科学技术的不断发展,离子加速器、反应堆、各种类型的探测器和分析设备、以及计算机技术等的发展,核化学与放射化学研究的范围和成果在不断扩展和增加,如核安全、环境放射化学、放射分析化学、放射性药物与标记化合物等,研究成果对于国防建设、核能发展、核技术应用等方面具有重要支撑作用。本文综述了近年来国内在上述领域所取得的研究进展。共引用参考文献161篇。  相似文献   

10.
This successful educational program in nuclear and radiochemistry for advanced undergraduate students is described. Funding from the U.S. Department of Energy supports 24 fellowships for participants in the intensive six-week programs at San Jose State University (CA) and Brookhaven National Laboratory (NY). Students are provided transportation to and from the school site, room and board, books, lab supplies, and six units of college credit. The instructional program consists of lectures and laboratory exercises that cover the fundamentals of nuclear theory, radiochemistry, nuclear instrumentation, radiological safety, and applications in research, midicine, and industry. Guest lectures and field trips broaden the students' exposure to nuclear science. Assistance is provided in the following year to those students who wish to join a research project at a university or national laboratory, and thereafter, in their applications to graduate or professional school.  相似文献   

11.
Nuclear and radiochemistry offers special and attractive possibilities for exploring the fascinating world of closed-shell carbon cages called fullerenes. This review presents a panoramic view on the use of radioactivity, nuclear irradiation and instrumental nuclear techniques in the elucidation of the structure and composition of fullerenes and their compounds.  相似文献   

12.
在探索微观元素的过程中,同位素与放射性元素位移定律的发现无疑具有里程碑式的意义。同位素的发现修正了道尔顿原子学说,元素位移规律的发现使放射化学成为一门独立的学科,为此1921年的诺贝尔化学奖授予了同位素与元素位移定律的发现者—弗雷德里克.索迪,2011年恰逢索迪逝世55周年,特写此文来纪念他对现代放射化学与核物理学做出的贡献。  相似文献   

13.
Following several national surveys that clearly indicated both a paucity of universities offering nuclear chemistry courses, and a severe shortage of personnel trained and educated in nuclear sciences, the US Department of Energy (DOE) agreed to fund a special summer program. This program would take 12 undergraduates on a competitive scholarship basis from across the nation, and provide them with an intensive 6 week course in the fundamentals of nuclear science. The first such course was taught in the summer of 1984 at San Jose State University in California, and has met each summer since that time. In this course, the students cover material equivalent to approximately 2 semester units of health physics and radiological safety, 3 semester units of lecture material on nuclear chemistry, radiochemistry, uses of radionuclides, and nuclear instrumentation, and 3 semester units of laboratory work in radiochemistry, radiation chemistry, and associated topics in nuclear science. A second course was opened in 1989, with the same curriculum and intent, and sited at the Brookhaven National Laboratory on Long Island, New York. With regard to intent, both courses are very successful, with a majority of persons going on to complete graduate degrees in some aspect of nuclear science (nuclear chemistry, nuclear physics, health physics, nuclear medicine PhD programs, and synthesis with radio-nuclides or programs such as nuclear pharmacy or pharmacology) or nuclear medicine and oncology via MD programs.Presently a member of the Chemistry Department, formerly Chairman of the Department of Chemistry, and now Dean of the College of Science at SJSU.  相似文献   

14.
Summary The MARC-VI conference served as an excellent setting for a session organized to present and discuss the problems in nuclear science manpower and education. A panel discussion and contributed papers reflected the world-wide situation. This paper presents the major points of the panel discussion. As a result, a resolution on the current situation of nuclear chemistry and radiochemistry was drafted and endorsed by the conference attendees.  相似文献   

15.
Hot atom chemistry in the past and at present is reviewed, and its future direction is considered. Though it has still important meanings in nuclear and radiochemistry studies, new ideas to improve the present situation are expected to emerge.  相似文献   

16.
I present some perspectives on teaching the subject of nuclear and radiochemistry in the form of a historical narrative. In addition, I briefly review a program, which we developed approximately seven years ago, to enchance learning in a specific course on the subject. This program involved developing illustrations, course notes, and video tutorials evaluating their effectiveness. After having used these aids extensively, I comment on their efficacy. Also, I briefly discuss the role of a nuclear science course in a nuclear engineering curriculum.  相似文献   

17.
The raison d'etre of research reactors is based on their role in a number of research fields, including radiochemistry. Inversely, it is in the interest of a healthy development of radiochemistry that a sufficient number of reactors will remain in operation and that the downward trend is in this reversed. In this paper, directions for further developments in reactor based radiochemistry are discussed, taking into account also relevant developments in competing fields. The discussion is focused on neutron activation analysis as well as tracer applications and environmental radiochemistry. Moreover, the consequences for reactor operations will be indicated.  相似文献   

18.
Summary The status of education in nuclear and radiochemistry in Slovenia is reviewed and elucidated at both undergraduate and graduate levels. It is observed that both the quantity and the quality of studies have deteriorated during recent years/decades, thus following similar trends in the developed countries. Presently, no dedicated study of radioactivity is offered within the country. The main reason for this deterioration is a general decline of interest for studying nuclear sciences and the limited need for such specialization in a small country such as Slovenia.  相似文献   

19.
Dr. S. Iimori and Prof. K. Kimura played an important pioneering role in the early period of Japanese history of nuclear and radiochemistry. A review is presented of the life and the work of these pioneers during the first half of the 20th century.  相似文献   

20.
The radiochemistry of aluminum was reviewed for the Sub-Committee on Radiochemistry, National Research Council of the United States National Academy of Sciences. The focus of the review is on nuclear and instrumental methods for analysis of Al in biological and environmental samples. Aluminum is a neurotoxin. Continuing controversy about environmental Al and Alzheimer's Disease has motivated development of ultra-sensitive and precise analysis of samples, since the first review on the radiochemistry of aluminum in 1961. Examples and selected procedures of particular interest to radiochemists are given. Selected topics include tracer applications of28Al and29Al; and AMS for determination of26Al relative to questions asked by cosmochemists and geochemists. Extensive tables provide physical data, stability constants of Al complexes, comparison of analytical methods of analysis of biological samples, and a compilation of results obtained by various techniques for Standard Reference Materials. The literature search was through August, 1995.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号