首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
线性簇合物SC2nS2-(n =1~12)电子吸收光谱   总被引:2,自引:0,他引:2  
应用密度泛函理论,在B3LYP/6-31G*水平上优化了线性簇合物SC2nS2-(n =1~12)的基态平衡几何结构,并计算了它们的谐振动频率.在基态平衡构型下,通过TD-B3LYP/cc-pvTZ和TD-B3LYP/cc-pvDZ计算,确定了簇合物SC2nS2-(n =1~10) 电子跃迁的垂直激发能和对应的振子强度.基于计算结果,导出了电子跃迁吸收波长与体系大小n的解析关系式,以及SC2nS2-体系第一电离能与体系大小n的解析表达式,并讨论了不同端位原子对碳链体系激发态性质的影响.  相似文献   

2.
The excited states of dinucleoside phosphates (dGpdG, dApdA, dApdT, TpdA, and dGpdT) in their cationic radical states were studied with time-dependent density functional theory (TD-DFT). The ground-state geometries of all the dinucleoside phosphate cation radicals considered, in their base stacked conformation, were optimized with the B3LYP/6-31G(d) method. Further, to take into account the effect of the aqueous environment surrounding the dinucleoside phosphates, the polarized continuum model (PCM) was considered and the excitation energies were computed by using the TD-B3LYP/6-31G(d) method. From this study, we find that the first transition in all the dinucleoside molecules involves hole transfer from base to base. dG*+pdG and dApdA*+ were found to have substantially lower first transition energies than others with two different DNA bases. Higher energy transitions involve base to sugar as well as base to base hole transfer. The calculated TD-B3LYP/6-31G(d) transition energies are in good agreement with previous calculations with CASSCF/CAS-PT2 level of theory. This TD-DFT work supports the experimental findings that sugar radicals formed upon photoexcitation of G*+ in gamma-irradiated DNA and suggests an explanation for the wavelength dependence found.  相似文献   

3.
Can isomer structures of hydrogen-bonded solute x solvent clusters be assigned by correlating gas-phase experimental S0 <--> S1 transitions with vertical or adiabatic excitation energies calculated by time-dependent density functional theory (TD-DFT)? We study this question for 7-hydroxyquinoline (7HQ), for which an experimental database of 19 complexes and clusters is available. The main advantage of the adiabatic TD-B3LYP S0 <--> S1 excitations is the small absolute error compared to experiment, while for the calculated vertical excitations, the average offset is +1810 cm(-1). However, the empirically adjusted vertical excitations correlate more closely with the experimental transition energies, with a standard deviation of sigma = 72 cm(-1). For the analogous correlation with calculated adiabatic TD-DFT excitations, the standard deviation is sigma = 157 cm(-1). The vertical and adiabatic TD-DFT correlation methods are applied for the identification of isomers of the 7-hydroxyquinoline.(MeOH) n , n = 1-3 clusters [Matsumoto, Y.; Ebata, T.; Mikami, N. J. Phys. Chem. B 2002, 106, 5591]. These confirm that the vertical TD-DFT/experimental correlation yields more effective isomer assignments.  相似文献   

4.
Modifications of the optical properties of poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] induced by fluorination of the vinylene units are investigated by means of time dependent density functional theory (TD-DFT) calculations and spectroscopic measurements in solution. The energy of the main absorption peak is blue-shifted by more than 0.8 eV in the fluorinated polymers. TD-DFT excitation energies for non-fluorinated and fluorinated oligomer structures of increasing number of monomers, employing fully relaxed geometries, are compared to the experimental absorption energies of the polymers. We found that the measured large blue-shift induced by the fluorination of the vinylene units is not caused by the electron-withdrawing effect of the fluorine substituents but it is related to a steric effect. The inter-monomer torsional angle of the fluorinated structures increases above 50 degrees , while in the non-fluorinated systems it is below 20 degrees . Further insight into the origin of the large blue-shift of the excitation energies is gained by a detailed analysis of the torsional potentials of non-fluorinated and fluorinated dihydroxystilbene. While for planar geometries the energy gap increases due to fluorination, it decreases for highly distorted geometries. In addition, we found that the torsional potential of dihydroxystilbene is rather flat, meaning that different isomers might, e.g., in the solid state, coexist.  相似文献   

5.
Vertical excitation energies for the lowest eleven singlet states of Td N4 were calculated using the TD-DFT method with the B3LYP functional, and at the EOM-CCSD level of theory. The vertical excitation energies for the five lowest-lying excited states were also obtained using the state-averaged CASSCF, CASPT2, CASPT3, and MRCI + Q methods. Our results show that the five lowest-lying states are of valence character. EOM-CCSD/d-aug-cc-pVTZ calculations predict that there are two weakly allowed optical transitions of T2 symmetry at 10.44 and 10.82 eV. The transition to the third T2 state, which is predicted to be at 10.89 eV, has an oscillator strength about one order of magnitude higher.  相似文献   

6.
线性BC2nB (n=1~12)的结构特征和电子光谱的理论研究   总被引:2,自引:0,他引:2  
应用密度泛函理论, 在B3LYP/6-31G*水平上优化得到了线性簇合物BC2nB (n=1~12, D(h)的平衡几何构型, 并计算了它们的谐振动频率. 在优化平衡几何构型下, 通过TD-B3LYP/cc-pvDZ和TD-B3LYP/cc-pvTZ计算, 分别得到了n=1~12和n=1~7的电子跃迁的垂直激发能和对应的振子强度. 在B3LYP/6-311+G*水平上计算得到了簇合物BC2nB (n=1~12, D(h)的电离能. 基于计算结果, 导出了BC2nB体系电子跃迁能以及第一电离能与体系大小n的解析表达式.  相似文献   

7.
The sequential Monte Carlo (MC) quantum mechanics (QM) methodology, using time-dependent density-functional theory (TD-DFT), is used to study the solvatochromic shift of the n-pi* transition of trans-acrolein in water. Using structures obtained from the isothermal-isobaric Metropolis MC simulation TD-DFT calculations, within the B3LYP functional, are performed for the absorption spectrum of acrolein in water. In the average acrolein makes one hydrogen bond with water and the hydrogen-bond shell is responsible for 30% of the total solvatochromic shift, considerably less than the shift obtained for the minimum-energy configurations. MC configurations are sampled after analysis of the statistical correlation and 100 configurations are extracted for subsequent QM calculations. All-electron TD-DFT B3LYP calculations of the absorption transition including acrolein and all explicit solvent molecules within the first hydration shell, 26 water molecules, give a solvatochromic shift of 0.18 +/- 0.11 eV. Using simple point charges to represent the solvent the shifts are calculated for the first, second, and third solvation shells. The results converge for the calculated shift of 0.20 +/- 0.10 eV in very good agreement with the experimentally inferred result of 0.20 +/- 0.05 eV. All average results presented are statistically converged.  相似文献   

8.
The ground state (S0) geometry of the firefly luciferin (LH2) was optimized by both DFT B3LYP and CASSCF methods. The vertical excitation energies (Tv) of three low-lying states (S1, S2, and S3) were calculated by TD-DFT B3LYP//CASSCF method. The S1 geometry was optimized by CASSCF method. Its Tv and the transition energy (Te) were calculated by MS-CASPT2//CASSCF method. Both the TD-DFT and MS-CASPT2 calculated S1 state Tv values agree with the experimental one. The IPEA shift greatly affects the MS-CASPT2 calculated Tv values. Some important excited states of LH2 and oxyluciferin (oxyLH2) are charge-transfer states and have more than one dominant configuration, so for deeply researching the firefly bioluminescence, the multireference calculations are desired.  相似文献   

9.
氟代乙烯阳离子的理论研究   总被引:1,自引:0,他引:1  
用B3LYP和MP2方法及6-31G(d, p)、6-31+G(d, p)、6-311G(d, p)和6-311+G(d, p) 基组,对六种氟代乙烯阳离子做了理论研究,优化了它们的基电子态的结构,计算了对应分子的垂直电离势(VIP)和绝热电离势(AIP).结果表明,与具有非平面结构的乙烯阳离子不同,六种氟代乙烯阳离子都只具有平面结构;与分子结构相比,离子结构的C-C键增长, C-F键缩短, CCF键角变小. 自然布居分析计算表明,这些离子的正电荷主要分布在与F原子相连的C原子和各H原子上. B3LYP/6-311+G(d, p) 级别上计算的各分子的VIP和AIP值和实验值符合得很好. 使用含弥散基函数的基集可以明显提高这类分子的电离势的计算精度.  相似文献   

10.
应用密度泛函理论,在B3LYP/6-31G**和B3LYP/6-311G**水平上优化得到了线型簇合物PC2nP(n=1-10)的基态平衡几何构型,计算了它们的谐振动频率.在基态平衡构型下,利用含时密度泛函理论,计算得到了簇合物PC2nP(n=1-10)的垂直激发能和相应的振子强度,导出了激发能与体系大小n的解析关系式.  相似文献   

11.
Time-dependent configuration interaction (TD-CI) simulations can be used to simulate molecules in intense laser fields. TD-CI calculations use the excitation energies and transition dipoles calculated in the absence of a field. The EOM-CCSD method provides a good estimate of the field-free excited states but is rather expensive. Linear-response time-dependent density functional theory (TD-DFT) is an inexpensive alternative for computing the field-free excitation energies and transition dipoles needed for TD-CI simulations. Linear-response TD-DFT calculations were carried out with standard functionals (B3LYP, BH&HLYP, HSE2PBE (HSE03), BLYP, PBE, PW91, and TPSS) and long-range corrected functionals (LC-ωPBE, ωB97XD, CAM-B3LYP, LC-BLYP, LC-PBE, LC-PW91, and LC-TPSS). These calculations used the 6-31G(d,p) basis set augmented with three sets of diffuse sp functions on each heavy atom. Butadiene was employed as a test case, and 500 excited states were calculated with each functional. Standard functionals yield average excitation energies that are significantly lower than the EOM-CC, while long-range corrected functionals tend to produce average excitation energies slightly higher. Long-range corrected functionals also yield transition dipoles that are somewhat larger than EOM-CC on average. The TD-CI simulations were carried out with a three-cycle Gaussian pulse (ω = 0.06 au, 760 nm) with intensities up to 1.26 × 10(14) W cm(-2) directed along the vector connecting the end carbons. The nonlinear response as indicated by the residual populations of the excited states after the pulse is far too large with standard functionals, primarily because the excitation energies are too low. The LC-ωPBE, LC-PBE, LC-PW91, and LC-TPSS long-range corrected functionals produce responses comparable to EOM-CC.  相似文献   

12.
The spectral properties of 1,6,7,12,13,18-hexaazatrinaphthylene (HATN) and a number of related compounds are modeled using density functional theory, B3LYP. The calculations predict the frequencies with mean absolute deviation of 6 cm(-1) and there is little improvement on going to basis sets larger than 6-31 G(d). The substituent effects on the observed spectra are modeled effectively in both frequency shifts and relative intensities. The electronic properties may be predicted using TD-DFT and these are in very good agreement, in terms of transition energies and intensities, with the experimental data.  相似文献   

13.
We present pair potentials for fluorinated methanes and their dimers with CO(2) based on ab initio potential energy surfaces. These potentials reproduce the experimental second virial coefficients of the pure fluorinated methanes and their mixtures with CO(2) without adjustment. Ab initio calculations on trimers are used to model the effects of nonadditive dispersion and induction. Simulations using these potentials reproduce the experimental phase-coexistence properties of CH(3)F within 10% over a wide range of temperatures. The phase coexistence curve of the mixture of CH(2)F(2) and CO(2) is reproduced with an error in the mole fractions of both phases of less than 0.1. The potentials described here are based entirely on ab initio calculations, with no empirical fits to improve the agreement with experiment.  相似文献   

14.
15.
We report how closely the Kohn-Sham highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) eigenvalues of 11 density functional theory (DFT) functionals, respectively, correspond to the negative ionization potentials (-IPs) and electron affinities (EAs) of a test set of molecules. We also report how accurately the HOMO-LUMO gaps of these methods predict the lowest excitation energies using both time-independent and time-dependent DFT (TD-DFT). The 11 DFT functionals include the local spin density approximation (LSDA), five generalized gradient approximation (GGA) functionals, three hybrid GGA functionals, one hybrid functional, and one hybrid meta GGA functional. We find that the HOMO eigenvalues predicted by KMLYP, BH&HLYP, B3LYP, PW91, PBE, and BLYP predict the -IPs with average absolute errors of 0.73, 1.48, 3.10, 4.27, 4.33, and 4.41 eV, respectively. The LUMOs of all functionals fail to accurately predict the EAs. Although the GGA functionals inaccurately predict both the HOMO and LUMO eigenvalues, they predict the HOMO-LUMO gap relatively accurately (approximately 0.73 eV). On the other hand, the LUMO eigenvalues of the hybrid functionals fail to predict the EA to the extent that they include HF exchange, although increasing HF exchange improves the correspondence between the HOMO eigenvalue and -IP so that the HOMO-LUMO gaps are inaccurately predicted by hybrid DFT functionals. We find that TD-DFT with all functionals accurately predicts the HOMO-LUMO gaps. A linear correlation between the calculated HOMO eigenvalue and the experimental -IP and calculated HOMO-LUMO gap and experimental lowest excitation energy enables us to derive a simple correction formula.  相似文献   

16.
取代的卟啉类衍生物在气敏传感器方面具有广泛的应用前景.本文采用了密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)研究了四种不同取代基的卟啉衍生物(meso位四硝基苯基/四氨基苯基卟啉(NO2PP,NH2PP)及其相应的锌金属卟啉衍生物(NO2ZnPP,NH2ZnPP))的紫外和近紫外光谱特征.利用两种不同的交换相关泛函(广义梯度近似泛函(PBE)和杂化密度泛函(B3LYP))优化了上述四种物质的结构,并应用TD-DFT计算了相应的电子激发能量和振动强度.结果表明,取代卟啉的吸收光谱与大量的电子跃迁有关;与B3LYP泛函预测的光谱相比,PBE泛函所得B带以及Q带的波长位置与实验值更为接近.另外,计算所得硝基取代基卟啉的B带相对于氨基取代基卟啉的B带发生了红移,这与实验现象也保持一致.由于卟啉衍生物的三重激发态在电子转移中有很重要的应用,因此在PBE/6-31G(d)水平上计算了四种物质的最低三重激发态能量,分别为1.426、1.469、1.608和1.581eV.  相似文献   

17.
This paper describes the extension of a previously reported empirical localized orbital correction model to the correction of ionization potential energies (IP) and electron affinities (EA) for atoms and molecules of first and second row elements. The B3LYP localized orbital correction version of the model (B3LYP-LOC) uses 22 heuristically determined parameters that improve B3LYP DFT IP and EA energy calculations on the G2 data set of 134 molecules from a mean absolute deviation (MAD) from experiment of 0.137 to 0.039 eV. The method significantly reduces the number of outliers and overall MAD to error levels below that achieved with G2 wave function based theory; furthermore, the new model has zero additional computational cost beyond standard DFT calculations. Although the model is heuristic and is based on a multiple linear regression to experimental errors, each of the parameters is justified on physical grounds, and each provides insight into the fundamental limitations of DFT, most importantly the failure of current DFT methods to accurately account for nondynamical electron correlation.  相似文献   

18.
线型碳链LiC_(2n)Li的结构和电子光谱的密度泛函理论研究   总被引:1,自引:5,他引:1  
应用密度泛函理论,在B3LYP/6 31G(d)水平上优化得到了线型簇合物LiC2nLi(n=1 ~10,D∞h)的基态平衡几何构型,并计算了它们的谐振动频率.利用含时密度泛函理论,计算了簇合物LiC2nLi的X1∑ +g→11∑ +u跃迁的垂直激发能,以及相应的振子强度.基于计算结果,建立了跃迁能和体系大小n的解析关系式. 同时也计算了体系的第一绝热电离能,讨论了体系的电离能与体系大小n的关系.  相似文献   

19.
Four-component relativistic time-dependent density functional theory (TD-DFT) is used to study charge-transfer (CT) excitation energies of the uranyl molecule as well as the uranyl tetrachloride complex. Adiabatic excitation energies and vibrational frequencies of the excited states are calculated for the lower energy range of the spectrum. The results for TD-DFT with the CAM-B3LYP exchange-correlation functional for the [UO(2)Cl(4)](2-) system are in good agreement with the experimentally observed spectrum of this species and agree also rather well with other theoretical data. Use of the global hybrid B3LYP gives qualitatively correct results, while use of the BLYP functional yields results that are qualitatively wrong due to the too low CT states calculated with this functional. The applicability of the overlap diagnostic of Peach et al. (J. Chem. Phys.2008, 128, 044118) to identify such CT excitations is investigated for a wide range of vertical transitions using results obtained with three different approximate exchange-correlation functionals: BLYP, B3LYP, and CAM-B3LYP.  相似文献   

20.
The DFT-B3LYP and G3X model chemistry were used to predict the cation structures and energetics of fluorinated, chlorinated, and brominated methanes. Ion–complex structures between methylene cations and HX (X = F, Cl, Br) were found for all H-containing cations, and [CHF–FH]+, [CF2–FH]+, [CCl2–ClH]+, and [CCl2–FH]+ structures are more stable than their normal tetravalent structures. Several cations should also be better described as ion–complex structures between methyl cations and halogen atoms, e.g., [CF3–Br]+. Transition states connecting normal and ion–complex structures were also located, and potential energy diagrams were constructed for decomposition of methane cations and to predict the fragmentation pathways. The G3X energies were used to predict the adiabatic ionization energies (IEas) and ion fragment appearance energies (AEs) from methanes. Many of the experimental AEs correspond to the energies of transition states instead of the thermodynamic dissociation limits. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号