首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hyphenated thermal analysis-mass spectrometry technique (TA-MS) was applied for the investigation of the thermal behavior of reference and aged parchment samples. The kinetic parameters of the process were calculated independently from all recorded TA and MS signals. The kinetic analysis showed the distinct dependence of the activation energy on the reaction progress. Such behavior is characteristic for the multistage mechanism of the reaction. The comparison of the kinetic parameters calculated from the different signals i.e. TG, DSC, MS for H2O, NO and CO2, however, indicated that they were differently dependent on the aging of the sample. For the parchment samples, the aging almost does not change the kinetics of the decomposition calculated from the DSC data: the influence of aging seems to be too negligible to be detected by these techniques. On the other hand, the much more sensitive mass spectrometric technique applied to the kinetic analysis allowed monitoring of visible changes in the thermal behavior of the parchment samples due to the aging process. The influence of aging was especially visible when the MS signals of water and nitric oxide were applied for the determination of the kinetic parameters. The applied method of the kinetic analysis allowed also the prediction of the thermal behaviour of reference and aged parchment samples under isothermal and modulated temperature conditions. Presented results have confirmed the usefulness of thermoanalytical methods for investigating behaviour of such complicated systems as leather or parchment.  相似文献   

2.
Thermal cracking of kerosene for producing ethylene and propylene has been studied in an experimental setup. A set of experiments were designed using Response Surface Design (Box Behnken) method. In these experiments, the coil outlet temperature (COT), residence time and steam ratio varied from 795 °C, 0.13 s and 0.6 to 838 °C, 0.27 s and 1.0, respectively. Obtained maximum ethylene and propylene yield in these experiments were 32 and 16.9 wt.%, respectively. In next step of studies, we tried to develop an applicable kinetic model to predict yield distribution of products of the kerosene thermal cracking. Therefore, a reaction mechanism is generated on the basis of major reactions classes in the pyrolysis and feed compounds using some simplification assumptions in the model. This semi-mechanistic kinetic model contains 172 reactions, 22 molecular and 29 radical species. A sensitivity analysis was done on kinetic model and controlling reactions identified. An objective function was defined and used to tune the model with experimental data. Finally, the calculated model results were compared with the experimental data. Scatter diagrams showed good agreement between model and experimental data.  相似文献   

3.
Kinetics of thermal decomposition of aseptic packages (e.g. Tetrapak cartons) and pyrolysis of this waste in a laboratory flow reactor was studied. Three different models for the calculation of the reaction rate and the determination of apparent kinetic parameters of thermal decomposition were used. The first method assumes a two stage thermal decomposition and the kinetic parameters were determined by fitting a derivative thermogravimetric (DTG) curve to experimentally determined thermogravimetric data of whole aseptic cartons. The second method uses kinetic parameters determined by fitting DTG curves to thermogravimetric data of individual components of aseptic packages. The last method was a multi-curve isoconversion method assuming a change of kinetic parameters with the increasing conversion. All types of the determined kinetic parameters were used in a mathematical model for thermal decomposition of mini briquettes made from aseptic packages at the temperature of 650°C. The model calculated also the heat conduction in the particles and it was verified by an independent set of experiments conducted in a laboratory screw type flow reactor.  相似文献   

4.
Summary In order to obtain catalysts, the thermal decomposition of the precursors is a compulsory step. However, kinetic analysis of the decomposition data obtained under non-isothermal conditions lead very seldom to the intimate reaction mechanism. There is also a lack of information because in non-isothermal kinetics, the compensation effect, is rather a rule and unfortunately a source of debate. In order to discriminate between these processes, and the influence of conversion, respectively temperature on the reaction rate, the NPK (non-parametric kinetic - Sempere and Nomen) method was used. This method is based on the singular value decomposition algorithm (SVD) applied on the matrix of reaction rate at corresponding conversion and temperature. This method allows a less speculative determination of the conversion functions and of the kinetic parameters.  相似文献   

5.
A predictive mathematical model to describe mass loss profiles of flame-retardant (FR) containing epoxy resin formulations is proposed. Mass loss is due to thermal degradation of the constituent components and can be described by a generic kinetic scheme with a given set of thermokinetic constants in the form of ordinary differential equations. The scope of this work is to determine the kinetic parameters of the thermal degradation of a known flame-retarded epoxy resin composition by using thermogravimetric analysis and using the acquired data to predict the degradation profiles for other formulations. The mass loss profiles of Visil and intumescent epoxy resin containing formulations were predicted by solving coupled systems of ordinary differential equations and then using Powell minimisation to find the optimal Arrhenius parameters, taking into account the mass ratio of the components in the mixture. The calculated kinetic constants for one formulation (85% resin-15% FR additives) are used to predict the mass loss profiles for other formulations (80% resin-20% FR additives and 90% resin-10% FR additives) with the assumption that the degradation mechanism does not change. The predicted thermal degradation profiles are compared with experimental data acquired using standard laboratory equipment in order to validate the proposed mechanisms. The kinetic parameters obtained adequately describe mass loss history of composite materials studied, even when extremely simplified kinetic schemes have been used.  相似文献   

6.
The authors recently published works in which the use of two novel equations for modeling the dispersive kinetics observed in various solid-state conversions are described. These equations are based on the assumptions of a ‘Maxwell-Boltzmann (M-B)-like’ distribution of activation energies and a first-order rate law. In the present work, it is shown that it may be possible to expand the approach to include mechanisms other than first-order, i.e. some of those commonly encountered in the field of thermal analysis, thus obtaining ‘dispersive versions’ of these kinetic models. The application of these dispersive kinetic models to the slightly sigmoidal, isothermal conversion-time (x-t) data of Rodante and co-workers for the degradation of the antibiotic, oxacillin, is described. This is done in an effort to test the limitations of the proposed dispersive models in describing kinetic data which is not clearly sigmoidal (i.e. as shown in previous works). Finally, it is demonstrated that, using graphical analysis, the typically sigmoidal x-t plots of first-order dispersive processes are the direct result of (asymmetric) activation energy distributions that are either ‘∩-shaped’ (for heterogeneous conversions) or ‘∪-shaped’ (for homogeneous conversions) in appearance, i.e. when the activation energy is plotted as a function of conversion. This finding lends support to the founding hypothesis of the authors’ approach for modeling dispersive kinetic processes: the existence of ‘M-B-like’ distributions of activation energies.  相似文献   

7.
This paper explores the relationship between the shapes of temperature-time curves obtained from experimental data recorded by means of constant rate thermal analysis (CRTA) and the kinetic model followed by the thermal degradation reaction. A detailed shape analysis of CRTA curves has been performed as a function of the most common kinetic models. The analysis has been validated with simulated data, and with experimental data recorded from the thermal degradation of polytetrafluoroethylene (PTFE), poly(1,4-butylene terephthalate) (PBT), polyethylene (PE) and poly(vinyl chloride) (PVC). The resulting temperature-time profiles indicate that the studied polymers decompose through phase boundary, random scission, diffusion and nucleation mechanisms respectively. The results here presented demonstrate that the strong dependence of the temperature-time profile on the reaction mechanism would allow the real kinetic model obeyed by a reaction to be discerned from a single CRTA curve.  相似文献   

8.
In the present study, the kinetics of the thermal decomposition of magnesium hydroxide is investigated, using isothermal methods of kinetic analysis. For this purpose, experiments in thermogravimetric analyser were carried out in standard values of temperature (350°, 400°, 450° and 500°C) which resulted in weight loss percent as a function of time. The data were further modified to give fraction reacted ‘' versus time to be tested in various forms of ‘' functions. In order to determine the mechanism of the magnesium hydroxide decomposition and the form of the conversion function which governs the dehydroxylation of Mg(OH)2, four different methods of isothermal kinetic analysis were used. Applying each of these methods to the data, it was concluded that the nucleation mechanism predominates the Mg(OH)2, decomposition for all values of temperature tested; at 350°C the kinetic model which represents the experimental data is that of reaction at phase boundaries (random nucleation), F1: ln(1−)=kt) while for the higher temperatures 400°, 450° and 500°C the kinetic equation of nucleation and development in two dimensions, A2: [−ln (1−)]1/2=kt was found to fit better the experimental results. The activation energy was evaluated applying two alternative methods; the Arrhenius plot, using maximum rates of reaction, from which the activation energy was evaluated to be 20.54 kcal/mol. An alternative method based on plots of ln t versus 1/T corresponding to the same value of ‘' gave values of 10.72, 13.82 and 16.31 kcal/mol for ‘' values of 0.25, 0.50 and 0.75, respectively.  相似文献   

9.
The kinetics of thermal decomposition of CoOOH have been studied by analysis of isothermal weight loss data under vacuum. The comparison of linear correlation coefficients of different kinetic expressions applied to these data does not allow an understanding of the mechanism, even when significance tests are performed (t test). A single value of the activation energy (193 kJ mol?1) is obtained from the Arrhenius plots, and is relatively independent of the choice of rate law. On the other hand, a change in the mechanism of formation of Co3O4 with temperature cannot be inferred from analysis of isothermal data. Thus, the statement of some authors that from formal kinetics it is possible to distinguish the proton and electron transfers involved in the transformation appears unacceptable.  相似文献   

10.
Combined kinetic analysis has been applied for the first time to the thermal degradation of polymeric materials. The combined kinetic analysis allows the determination of the kinetic parameters from the simultaneous analysis of a set of experimental curves recorded under any thermal schedule. The method does not make any assumptions about the kinetic model or activation energy and allows analysis even when the process does not follow one of the ideal kinetic models already proposed in the literature. In the present paper the kinetics of the thermal degradation of both polytetrafluoroethylene (PTFE) and polyethylene (PE) have been analysed. It has been concluded, without previous assumptions on the kinetic model, that the thermal degradation of PTFE obeys a first order kinetic law, while the thermal degradation of PE follows a diffusion-controlled kinetic model.  相似文献   

11.
Thermogravimetric analysis of azo-peroxyesters revealed two decomposition stages on TG curves. Molecular nitrogen is released in the first stage and carbon dioxide in the second. Fitting the thermogravimetric data by means of the three-parameter model and a classic one based on an Arrhenius-type kinetic equation showed that the former approach satisfactorily describes the process within the wide range of the extent of decomposition. It was found that two coefficients of the three-parameter equation are related to the temperature of maximum reaction rate. One of the coefficients of the three-parameter equation is also related to the activation energy. The compounds investigated can be grouped with respect to their kinetic characteristics, structure and stage of decomposition.  相似文献   

12.
The Al and In-diclofenac compounds were prepared. Thermogravimetry (TG) and X-ray diffraction powder patterns were used to characterize these compounds. Details concerning the dehydration and thermal decomposition as well as data of kinetic parameters have been described here. The kinetic studies of these stages were evaluated from several heating rates with mass sample of 2 and 5 mg in open crucibles under nitrogen atmosphere. The results of the present study improve the knowledge on these compounds including their dehydration and thermal stability. The obtained data leads to a dependence on the sample mass, which results in two kinetic behavior patterns.  相似文献   

13.
A simple and precise incremental isoconversional integral method based on Li-Tang (LT) method is proposed for kinetic analysis of solid thermal decomposition, in order to evaluate the activation energy as a function of conversion degree. The new method overcomes the limitation of LT method in which the calculated activation energy is influenced by the lower limit of integration. By applying the new method to kinetic analysis of both the simulated nonisothermal case and experimental case of strontium carbonate thermal decomposition, it is shown that the dependence of activation energy on conversion degree evaluated by the new method is consistent with those obtained by Friedman (FR) method and the modified Vyazovkin method. As the new method is free from approximating the temperature integral and not sensitive to the noise of the kinetic data, it is believed to be more convenient in nonisothermal kinetic analysis of solid decompositions.  相似文献   

14.
Arsenate adsorption on amorphous (RuO(2)1.1H(2)O) and crystalline (RuO(2)) ruthenium oxides was evaluated using spectroscopic and kinetic methods to elucidate the adsorption mechanism. Extended X-ray absorption fine structure spectroscopy (EXAFS) was used to determine the local coordination environment of adsorbed arsenate. Additionally, pressure-jump (p-jump) relaxation spectroscopy was used to investigate the kinetics of arsenate adsorption/desorption on ruthenium oxides. Chemical relaxations resulting from the induced pressure change were monitored via electrical conductivity detection. EXAFS data were collected for two initial arsenate solution concentrations, 3 and 33 mM at pH 5. The collected spectra indicated a similar coordination environment for arsenate adsorbed to RuO(2)1.1H(2)O for both arsenate concentrations. In contrast the EXAFS spectra of RuO(2) indicated differences in the local coordination environments for the crystalline material with increasing arsenate concentration. Data analysis indicated that both mono- and bidentate surfaces complexes were present on both RuO(2)1.1H(2)O and RuO(2). Relaxation spectra from the pressure-jump experiments of both ruthenium oxides resulted in a double relaxation event. Based on the relaxation spectra, a two step reaction mechanism for arsenate adsorption is proposed resulting in the formation of a bidentate surface complex. Analysis of the kinetic and spectroscopic data suggested that while there were two relaxation events, arsenate adsorbed to ruthenium oxide surfaces through both mono- and bidentate surface complexes.  相似文献   

15.
16.
The influence of the mass transfer phenomena on the thermal decomposition of calcium carbonate powders under vacuum was investigated through a detailed kinetic analysis by the constant transformation rate thermal analysis (CRTA). Reliable kinetic curves, free from the mass transfer problems, can be obtained by CRTA under vacuum, but within a restricted range of small sample sizes, <10 mg. The influence of mass transfer phenomena on the apparent kinetic parameters is discussed in relation to the distribution of fractional reaction α of the individual particles in a sample assemblage. Only when the distribution of α is maintained constant among a series of experimental kinetic curves, can a reliable activation energy, E, be obtained by one of the isoconversion methods. In this respect, a single cyclic CRTA permits the α distribution to be maintained constant between the two adjacent data points with different decomposition rates. In the present study, an apparent E value of about 223 kJ mol−1 was obtained by the Friedman method from a series of CRTA curves with sample sizes less than 10 mg and by the rate jump method from a single cyclic CRTA curve with sample size of about 40 mg. The first-order (F1) law was determined to be the most appropriate kinetic model function, from a series of CRTA curves, instead of the ideal contracting geometry (R3) law formalized for the three-dimensional shrinkage of the reaction interface in the respective particles. The particle size distribution of the sample particles is suggested to be one possible reason for the apparent agreement with the F1 law. A kinetic exponent n of the nth-order law that deviated from unity was obtained from the CRTA curves with sample sizes larger than 10 mg, due to an additional distribution of α produced by mass transfer phenomena. Because the α distribution due to the mass and heat transfer phenomena cannot be expressed practically in an analytical function, a meaningful kinetic model and preexponential factor are difficult to estimate from kinetic data that are influenced by the transfer phenomena. © 1998 John Wiley & Sons, Inc. Int. J Chem Kinet: 30: 737–744, 1998  相似文献   

17.
In many decomposition reactions, the reaction velocity can be described as a product of two functions: a temperature dependent part K(T) and the kinetic function f(1 – α), where T designates the temperature and α the fraction of reactant that has decomposed. The physical interpretation of these functions is discussed for both solid and homogeneous systems. A method is described by which f(1 – α) and K(T) can be determined from kinetic data. The mechanism of decomposition can subsequently be identified which should be consistent with the derived kinetic parameters. The method has been applied to analyze the kinetics of the thermal decomposition of nitromethane. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Thermal decomposition of silver acetate was studied (TG, DSC, mass-spectrometry, X-ray analysis, electron microscopy). Non-isothermal thermogravimetric data (obtained at two different rates of linear heating) were used for kinetic studies. Kinetic parameters were calculated only for the chosen decomposition step.  相似文献   

19.
Thermal analysis techniques, such as thermogravimetry, differential thermal analysis and evolved gas analysis, have been applied to thermal endurance evaluation of electrical insulating materials of high polymers, which are used for a long time at a relatively high operating temperature. Various attempts have been made to estimate the life time of the materials at the operating temperature by thermal analysis and a calorimetric method. These are critically described in this review paper.  相似文献   

20.
One possible process for recovering valuable chemical and petrochemical products from plastic waste is the stepwise thermal degradation of polymer mixtures. This potentially allows the step by step simultaneous separation of the different product fractions generated by the polymers of the blend. The aim of this paper is to investigate the effect of the mixing scale of the polymers and their interactions in the melt. Several thermogravimetric analyses were performed on small samples of polyethylene (PE) and polystyrene (PS) mixtures. Two types of operating conditions were adopted: the first one is a dynamic analysis with a linear increase of the temperature over time, the latter consists of two sequential isothermal steps. The experimental results confirm that if the mixing scale is poor, the decomposition of each polymer behaves independently of the presence of the other one. Conversely, when the mixing of the two polymers reaches the molecular scale, a co-pyrolysis takes place with partial interactions. A two phase system is assumed: one phase characterized by a larger PS fraction, the other one by a prevailing PE amount. In order to properly predict the kinetic interactions typical of the mixed phases, it was necessary to extend the detailed kinetic model already developed and validated for the single polymers. The resulting two phase model gives a satisfactory explanation of several experimental data from the thermal degradation of PE–PS mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号