首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some new unsymmetrical tetradentate Schiff-base ligands, (N-salicylidene-N′-pyrrolidene)-1,2-ethylenediamine(H2salpyren) (H2L1), (H2Mesalpyren) (H2L2), (H2phsalpyren) (H2L3), (N-salicylidene-N′-pyrrolidene)-1,3-propylenediamine (H2salpyrpd) (H2L4), (H2Mesalpyrpd) (H2L5), (H2phsalpyrpd) (H2L6) and their Ni(II) and Cu(II) complexes were synthesized and characterized by elemental analyses, IR, UV-Vis, 1H NMR and mass spectra and magnetic moments. Possible structures of these complexes have been proposed. The thermodynamic formation constants of the complexes were determined spectrophotometrically at constant ionic strength 0.1?M (NaClO4), at 25°C in methanol.  相似文献   

2.
N'-[4'-benzo(15-crown-5)]-4-tolylaminoglyoxime (H2L1),the sodium chloride salt of H2L1 (H2L1...NaCl),N'-[4'-benzo(15-crown-5)]-4-chlorophenylaminoglyoxime(H2L2) and the sodium chloride salt of H2L2 (H2L2...NaCl)have been prepared from p-chlorophenylchloroglyoxime,p-tolylchloroglyoxime, 4'-aminobenzo[15-crown-5] and sodiumbicarbonate or sodium bicarbonate and sodium chloride. Nickel (II),cobalt (II) and copper (II) complexes of H2L and H2L...NaClhave a metal-ligand ratio of 1 : 2 and the ligand coordinatesthrough the two N atoms, as do most of the vic-dioximes. Their IR spectra and elemental analyses are given, together with1H NMR spectra of the ligands.  相似文献   

3.
Four new nickel(II), zinc(II), and cobalt(II) complexes, [Zn(L1)2]?·?H2O (1), [Ni(L1)2]?·?H2O (2), [Ni(L2)2] (3), and [Co(L3)2]?·?H2O (4), derived from hydroxy-rich Schiff bases 2-{[1-(5-chloro-2-hydroxyphenyl)methylidene]amino}-2-methylpropane-1,3-diol (HL1), 2-{[1-(2-hydroxy-3-methoxyphenyl)methylidene]amino}-2-ethylpropane-1,3-diol (HL2), and 2-{[1-(5-bromo-2-hydroxyphenyl)methylidene]amino}-2-methylpropane-1,3-diol (HL3) have been synthesized and characterized by elemental analyses, infrared spectroscopy, and single-crystal X-ray determination. Each metal in the complexes is six-coordinate in a distorted octahedral coordination. The Schiff bases coordinate to the metal atoms through the imino N, phenolate O, and one hydroxyl O. In the crystal structures of HL1 and the complexes, molecules are linked through intermolecular O–H···O hydrogen bonds, forming 1-D chains. The urease inhibitory activities of the compounds were evaluated and molecular docking study of the compounds with the Helicobacter pylori urease was performed.  相似文献   

4.
Summary Copper(II), nickel(II) and cobalt(II) perchlorate complexes of 5,5-dimethylcyclohexane-1,2,3-trione-2-(p-nitrophenyl-hydrazone) (HL1), 5,5-dimethyl-cyclohexane-1,2,3-trione-2-(p-chlorophenylhydrazone) (HL2), 5,5-dimethylcyclohexane-1,2,3-trione-2-(o-chlorophenylhydrazone) (HL4), 5,5-dimethylcyclohexane-1,2,3-trione-2-(o-methylphenyl-hydrazone) (HL5) and 5,5-dimethylcyclohexane-1,2,3-trione-2-(m-methylphenylhydrazone) (HL6) have been prepared, and characterized using analytical, spectral and magnetic measurements. The data reveal that the reaction of Cu(ClO4)2 (1 mol) in EtOH, with all ligands, produces complexes of the type CuL(ClO4)(H2O).nH2O. Nickel(II) and cobalt(II) perchlorates react only with HL1 and HL2 to produce the complexes ML(ClO4)(H2O)3 (where M = NiII, L = L and L2, M = CoII, L = L1) and Co(HL2)2-(ClO4)2.2H2O. The spectral data show that the ligands behave as monobasic bidentate in their azo forms, except HL2 which reacts with cobalt(II) as a neutral bidentate ligand in its hydrazone form.  相似文献   

5.
Two cubane-type tetranuclear nickel(II) and copper(II) complexes, [Ni4(L1)4(CH3OH)4] (1) and [Cu4(L2)4]·H2O (2), where L1 and L2 are the dianionic forms of the tridentate Schiff bases 4-nitro-2-[(2-hydroxyethylimino)methyl]phenol (H2L1) and 5-methoxy-2-[(2-hydroxyethylimino)methyl]phenol (H2L2), respectively, have been synthesized and characterized by physicochemical methods and single-crystal X-ray diffraction. The magnetic properties of the complexes show the presence of ferromagnetic interactions for complex 1 and antiferromagnetic interactions for complex 2, mediated by hydroxyl bridges.  相似文献   

6.
Chiral and racemic Salen-type Schiff-base ligands (H2L1, H2L2 and H2L3), condensed between D-(+)- and D,L-camphoric diamine (also known as (1R,3S)-1,2,2-trimethylcyclopentane-1,3-diamine) and 2-hydroxybenzaldehyde or 3,5-dibromo-2-hydroxybenzaldehyde with a 1:2 molar ratio, have been synthesized and characterized. A series of new nickel(II), palladium(II) and copper(II) complexes of these chiral and racemic ligands exhibiting different coordination number (4, 5 and 6) have been characterized with the formulae [NiL1]·CH3OH (3), [NiL1]·H2O (4), [NiL2] (5), [PdL2] (6), [Cu2(L2)2(H2O)] (7) and [NiL3(DMF)(H2O)] (8). Different solvent molecules in 3 and 4 (methanol and water molecules) as well as different apical ligands in 7 and 8 (water and DMF molecules) are involved in different O–H···O hydrogen bonding interactions to further stabilize the structures. UV–Vis (UV–Vis), circular dichroism (CD) spectra and thermogravimetric (TG) analyses for the metal complexes have also been carried out.  相似文献   

7.
Naphthaldimines containing N2O2 donor centers react with platinum(II) and (IV) chlorides to give two types of complexes depending on the valence of the platinum ion. For [Pt(II)], the ligand is neutral, [(H2L1)PtCl2]·3H2O (1) and [(H2L3)2Pt2Cl4]·5H2O (3), or monobasic [(HL2)2Pt2Cl2]·2H2O (2) and [(HL4)2Pt]·2H2O (4). These complexes are all diamagnetic having square-planar geometry. For [Pt(IV)], the ligand is dibasic, [(L1)Pt2Cl4(OH)2]·2H2O (5), [(L2)Pt3Cl10]·3H2O (6), [(L3)Pt2Cl4(OH)2]·C2H5OH (7) and [(L4)Pt2Cl6]·H2O (8). The Pt(IV) complexes are diamagnetic and exhibit octahedral configuration around the platinum ion. The complexes were characterized by elemental analysis, UV-Vis and IR spectra, electrical conductivity and thermal analyses (DTA and TGA). The molar conductances in DMF solutions indicate that the complexes are non-ionic. The complexes were tested for their catalytic activities towards cathodic reduction of oxygen.  相似文献   

8.
Novel oligonuclear complexes of Co(II), Ni(II), and Cu(II) with 4-(3,4-dichlorophenyl)-1,2,4-triazole (L) of the composition [M3L10(H2O)2](NO3)6 (M = Co(II), Ni(II)), [Ni3L6(H2O)6]Hal6 (Hal = Cl?, Br?), and [Cu5L16(H2O)2](NO3)10 · 2H2O were synthesized and studied by magnetic susceptibility, electronic and IR spectroscopy, and powder X-ray diffraction methods. All the above complexes are X-ray amorphous. Antifer-romagnetic exchange interactions between the M2+ ions were discovered in the [Co3L10(H2O)2](NO3)6 and [Ni3L10(H2O)2](NO3)6 complexes, whereas ferromagnetic exchange interactions were observed in the complexes [Ni3L6(H2O)6]Cl6, [Ni3L6(H2O)6]Br6, and [Cu5L16(H2O)2](NO3)10 · 2H2O.  相似文献   

9.
《印度化学会志》2021,98(10):100168
The three new Cobalt(II) complexes [Co(L1)2(H2O)2] (1), [Co(L2)2(H2O)2] (2), and [Co(L3)2(H2O)2] (3) have been synthesized by interaction of acyl pyrazolone ligands, 4-(4-chlorobenzoyl)3-methyl1-phenyl1H-pyrazole5(4H)-one (HL1), 4-(4-chlorobenzoyl)1-(3-chlorophenyl)3-methyl1H-pyrazole5(4H)-one (HL2) and 5-methyl4-(4-methylbenzoyl)2-phenyl2,4-dihydro3H-pyrazole3-one (HL3) with CoCl2.6H2O. The complexes were screened using FTIR, UV–Vis, TGA, and Single Crystal X-ray diffraction spectroscopic techniques. A relative study of the ligands’ FTIR spectra and their metal complexes reveal the formation, sifting, and disappearance of several bands during complexation. Other interpretations stipulated that these three complexes are mononuclear and exhibited octahedral geometry around Co2+.Triclinic crystal system, Distortion in Octahedral geometry, and Intermolecular hydrogen bonding confirmed by Single-crystal XRD analysis of [Co(L3)2(EtOH)2] complex.  相似文献   

10.
Three new potentially hexadentate N4O2 Schiff-base ligands (H2L1, H2L2 and H2L3) were prepared from the reaction of the polyamines N,N′-bis(2-aminophenyl)-1,2-ethanediamine (L1), N,N′-bis(2-aminophenyl)-1,3-propanediamine (L2) and N,N′-bis(2-aminophenyl)-1,4-butanediamine (L3), respectively with salicylaldehyde. Reaction of the Schiff bases with Ni(II) salts in the presence of N(Et)3 gave the neutral complexes [NiL4], [NiL5] and [NiL6]. Ni(II) complexes of the polyamines were also prepared. One of complexes [Ni(L1)(MeCN)2](ClO4)2·MeCN has been characterized through X-ray diffraction methods.  相似文献   

11.
Heteronuclear complexes containing oxorhenium(V), with Fe(III), Co(II), Ni(II), Cu(II), Cd(II) and UO2(VI) ions were prepared by the reaction of the complex ligands [ReO(HL1)(PPh3)(OH2)Cl]Cl (a) and/or [ReO(H2L2)(PPh3)(OH2)Cl]Cl (b), where H2L1?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(5,6-diphenyl-1,2,4-triazine-3-ylhydrazone) and H3L2?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(1H-benzimidazol-2-ylhydrazone), with transition and actinide salts. Heterodinuclear complexes of ReO(V) with Fe(III), Co(II), Ni(II), Cu(II) and Cd(II) were obtained using a 1?:?1 mole ratio of the complex ligand and the metal salt. Heterotrinuclear complexes were obtained containing ReO(V) with UO2(VI) and Cu(II) using 2?:?1 mole ratios of the complex ligand and the metal salts. The complex ligands a and b coordinate with the heterometal ion via a nitrogen of the heterocyclic ring and the nitrogen atom of the C=N7 group. All transition metal cations in the heteronuclear complexes have octahedral configurations, while UO2(VI)?complexes have distorted dodecahedral geometry. The structures of the complexes were elucidated by IR, ESR, electronic and 1H NMR spectra, magnetic moments, conductance and TG-DSC measurements. The antifungal activities of the complex ligands and their heteronuclear complexes towards Alternaria alternata and Aspergillus niger showed comparable behavior with some well-known antibiotics.  相似文献   

12.
2-[(2-Hydroxyphenylimino)methyl]phenol (H2L1) and 1-[(2-hydroxyphenylimino)methyl]naphthalen-2-ol (H2L2) reacted with copper(II) acetate hydrate and sulfanilamide (Sf1), sulfathiazole (Sf2), sulfaethidole (Sf3), sulfadiazine (Sf4), and sulfadimidine (Sf5) in ethanol to give mixed-ligand copper chelates with the composition Cu(Sf1–5)(L1–2) · n H2O (n = 1, 2). All these complexes are monomeric. Salicylaldehyde imines (H2L1 and H2L2) behave as doubly deprotonated tridentate O,N,O ligands, whereas sulfanilamides (Sf1–5) are unidentate ligands. Thermolysis of the synthesized complexes includes dehydration at 70–90°C, followed by complete thermal decomposition (290–380°C). The complexes [Cu(Sf1)(L1)] · 2H2O and [Cu(Sf3)(L1)] · H2O at a concentration of 10−4 M inhibited growth and reproduction of 100% of human myeloid leukemia cells (HL-60). The inhibitory effect was 90 and 75%, respectively, at a concentration of 10−5 M, whereas no antitumor activity was observed at a concentration of 10−6 M.  相似文献   

13.
Four water soluble azo dyes, 4-(isopropyl)-2-[(E)-(4-chlorophenyl)diazenyl]phenol (L 1), 4-(isopropyl)-2-[(E)-(2,4-dichlorophenyl)diazenyl]phenol (L2), 4-(sec-butyl)-2-[(E)-(4-chlorophenyl) diazenyl]phenol (L 3), 4-(sec-butyl)-2-[(E)-(2,4-dichlorophenyl)diazenyl]phenol (L 4), and their Cu(II) and Ni(II) complexes were synthesized and characterized using spectroscopic methods. Examination of their thermal stability revealed similar decomposition temperature of approximately 260–300°C and that they were more thermally stable than their metal complexes. Ni(II) complexes of ligands L2 and L4 were more stable than the other coordination compounds. Among the synthesized ligands, L2 and the complexes Cu(L3)2 and Ni(L4)2 showed both antimicrobial and antifungal activity. However, the other ligands and the complexes were poorly active against selected microorganisms.  相似文献   

14.
Isatin (L1) and N-methylisatin (L2) β-thiosemicarbazones react in ethanol with Cu(II) chloride and bromide in the presence of sulfanilamide (Streptocid, Sf1), N-acetylsulfanilamide (Sulfacyl, Sf2), Norsulfazole (Sf3), Aethazolum (Sf4), and Sulfadimesine (Sf5) to form coordination compounds Cu(Sf1–5)L1–2X2 · nH2O (X = Cl, Br; n = 2–5). All the complexes have a monomeric structure. Thiosemicarbazones L1 and L2 in these complexes are tridentate O,N,S ligands, and sulfanilamides Sf1–5 are monodentate ligands. Thermolysis of the substances involves the steps of dehydration (70–95°C) and complete decomposition (410–530°C).  相似文献   

15.
Co(II), Ni(II), Cu(II) and Cd(II) chelates with 1-aminoethylidenediphosphonic acid (AEDP, H4L1), α-amino benzylidene diphosphonic acid (ABDP, H4L2), 1-amino-2-carboxyethane-1,1-diphosphonic acid (ACEDP, H5L3), 1,3-diaminopropane-1,1,3,3-tetraphosphonicacid (DAPTP, H8L4), ethylenediamine-N,N′-bis(dimethylmethylene phosphonic)acid (EDBDMPO, H4L5), O-phenylenediamine-N,N′-bis(dimethyl methylene phosphonic)acid (PDBDMPO, H4L6), diethylene triamine-N,N,N′,N′,NN″-penta(methylene phosphonic)acid (DETAPMPO, H10L7) and diethylene triamine-N,N″-bis(dimethyl methylene phosphonic)acid (DETBDMPO, H4L8) have been synthesised and were characterised by elemental and thermal analyses as well as by IR, UV–VIS, EPR and magnetic measurements. The first stage in the thermal decomposition process of these complexes shows the presence of water of hydration, the second denotes the removal of the coordinated water molecules. After the loss of water molecules, the organic part starts decomposing. The final decomposition product has been found to be the respective MO·P2O5. The data of the investigated complexes suggest octahedral geometry with respect to Co(II) and Ni(II) and tetragonally distorted octahedral geometry with respect to Cu(II). Antiferromagnetism has been inferred from magnetic moment data. Infrared spectral studies have been carried out to determine coordination sites.  相似文献   

16.
Four new substituted amino acid ligands, N-(3-hydroxybenzyl)-glycine acid (HL1), N-(3-hydroxybenzyl)-alanine acid (HL2), N-(3-hydroxybenzyl)-phenylalanine acid (HL3), and N-(3-hydroxybenzyl)-leucine acid (HL4), were synthesized and characterized on the basis of 1H NMR, IR, ESI-MS, and elemental analyses. The crystal structures of their copper(II) complexes [Cu(L1)2]·2H2O (1), [Cu(L2)2(H2O)] (2), [Cu(L3)2(CH3OH)] (3), and [Cu(L4)2(H2O)]·H2O (4) were determined by X-ray diffraction analysis. The ligands coordinate with copper(II) through secondary amine and carboxylate in all complexes. In 2, 3, and 4, additional water or methanol coordinates, completing a distorted tetragonal pyramidal coordination geometry around copper. Fluorescence titration spectra, electronic absorption titration spectra, and EB displacement indicate that all the complexes bind to CT-DNA. Intrinsic binding constants of the copper(II) complexes with CT-DNA are 1.32?×?106?M?1, 4.32?×?105?M?1, 5.00?×?105?M?1, and 5.70?×?104?M?1 for 1, 2, 3, and 4, respectively. Antioxidant activities of the compounds have been investigated by spectrophotometric measurements. The results show that the Cu(II) complexes have similar superoxide dismutase activity to that of native Cu, Zn-SOD.  相似文献   

17.
Benzoylhydrazones of 5-nitro- (H2L1), 3-nitro- (H2L2), 5-chloro- (H2L3), 5-bromo- (H2L4), and 3,5-dibromosalicylaldehydes (H2L5) react in ethanol with copper acetate to form complexes CuL1-5. In the presence of amines (A = C5H5N, 3-CH33C5H4N), the above reactions give complexes CuL1-5nH2O (n = 0, 1). When cuprous bromide or nitrate and benzoylhydrazone H2L3 were used as starting materials, complexes Cu(HL3)X (X = Br-, NO3 -) were isolated. The resulting complexes all are polynuclear structures in which azomethines H2L1-5 behave as tridentate O,N,O-ligands. Thermolysis of the complexes involves the stages of dehydration (70-90°C), deaquation (120-150°C) or deamination (150-180°C), and complete thermal de- composition (350-500°C).  相似文献   

18.
Three new reduced amino-acid Schiff-base complexes, [Zn(HL)2] · H2O (1), [Ni(HL)2] · H2O (2), and [Cd(HL)2] · H2O (3), where H2L is a reduced Schiff base derived from condensation of N-(2-hydroxybenzaldehyde) and L-histidine, have been synthesized and characterized by elemental analysis, UV-Vis absorption spectra and single crystal X-ray diffraction. Complexes 13 are isostructural. All metal centers are six-coordinate with O2N4 donor sets in slightly distorted octahedra. Unlike its Schiff-base counterpart, the deprotonated monoanionic ligand HL? has a more flexible backbone and two HL? are tridentate to one metal. Moreover, the binding interactions of these complexes with calf thymus DNA (CT-DNA) have been investigated by UV-Vis spectra and fluorescence quenching, which show that the complexes bind in an intercalative mode.  相似文献   

19.
Summary Nickel(II), palladium(II), cobalt(II) and copper(II) complexes of the ligandN,N-1,2-propane-bis(methyl 2-amino-cyclopent-1-ene-dithiocarboxylate) (H2L1),N,N-1,3-propane-bis(methyl 2-aminocyclopent-1-ene-dithiocarboxylate) (H2L2) andN,N-[bis(methyl 2-aminocyclopent-1-ene-dithiocarboxylate)] diethylenetriamine (H2L3) have been synthesised. Both H2L1 and H2L2 form complexes of the type ML, and all but the copper(II) complexes, are square planar. In the copper(II) complexes tetrahedral distortion is significantly more with CuL2. From H2L3 square planar complexes of the type [M(HL3)X] (M=Ni, X=Cl, Br, I or SCN; M=Pd, X=Cl or Br) have been obtained in which the donor unit involved is N2SX. The composition of the cobalt(II) and copper(II) complexes is [M(H2L3)X2] (X=Cl or Br) which contain the chromophore [MN3X2].  相似文献   

20.
New bi- and trihomonuclear Mn(II), Co(II), Ni(II), and Zn(II) complexes with sulfa-guanidine Schiff bases have been synthesized for potential chemotherapeutic use. The complexes are characterized using elemental and thermal (TGA) analyses, mass spectra (MS), molar conductance, IR, 1H-NMR, UV-Vis, and electron spin resonance (ESR) spectra as well as magnetic moment measurements. The low molar conductance values denote non-electrolytes. The thermal behavior of these chelates shows that the hydrated complexes lose water of hydration in the first step followed by loss of coordinated water followed immediately by decomposition of the anions and ligands in subsequent steps. IR and 1H-NMR data reveal that ligands are coordinated to the metal ions by two or three bidentate centers via the enol form of the carbonyl C=O group, enolic sulfonamide S(O)OH, and the nitrogen of azomethine. The UV-Vis and ESR spectra as well as magnetic moment data reveal that formation of octahedral [Mn2L1(AcO)2(H2O)6] (1), [Co2(L1)2(H2O)8] (2), [Ni2L1(AcO)2(H2O)6] (3), [Mn3L2(AcO)3(H2O)9] (5), [Co3L2(AcO)3(H2O)9] · 4H2O (6), [Ni3L2(AcO)3(H2O)9] · 7H2O (7), [Mn3L3(AcO)3(H2O)6] (9), [Co2(HL3)2(H2O)8] · 4H2O (10), [Ni3L3(AcO)3(H2O)9] (11), [Mn3L4(AcO)3(H2O)9] · H2O (13), [Co2(HL4)2(H2O)8] · 5H2O (14), and [Ni3L4(AcO)3(H2O)9] (15) while [Zn2L1(AcO)2(H2O)2] (4), [Zn3L2(AcO)3(H2O)3] · 2H2O (8), [Zn3L3(AcO)3(H2O)3] · 3H2O (12), and [Zn3L4(AcO)3(H2O)3] · 2H2O (16) are tetrahedral. The electron spray ionization (ESI) MS of the complexes showed isotope ion peaks of [M]+ and fragments supporting the formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号