首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Several aspects of vortex motion are considered, with a special stress on the present status of idealization, such as point vortices or vortex filament. As an introduction, elements of vortices induced by the transient flow past an obstacle are considered and their role and development are stated.

Following this introduction, a general survey of the issues in this symposium is made sketchily. As an example, the motion of point vortices in the presence of an external flow or a boundary is discussed on the basis of the Hamiltonian formalism. The cases of linear flow and semicircular boundary are taken as examples of regular and chaotic motions. Secular behaviour of a pair of vortices in the flow is remarked.  相似文献   


3.
We describe the dynamical system governing the evolution of a system of point vortices on a rotating spherical shell, highlighting features which break what would otherwise be an integrable problem. The importance of the misalignment of the center-of-vorticity vector associated with a cluster of point vortices with the axis of rotation is emphasized as a crucial factor in the interpretation of dynamical features for many flow configurations. We then describe two important physical mechanisms which break what would otherwise be an integrable problem—the interactions between the local center-of-vorticity vectors of more than one region of concentrated vorticity, and the coupling between the center-of-vorticity vector and the background vorticity field which supports Rossby waves. Focusing on the Polar vortex splitting event of September 2002, we describe simple (i.e., low dimensional) mechanisms that can trigger instabilities whose subsequent development cause the onset of chaotic advection and global particle transport. At the linear level, eigenvalues that oscillate between elliptic and hyperbolic configurations initiate the pinch-off process of a passive patch representing the Polar vortex. At the nonlinear level, the evolution and topological bifurcations of the streamline patterns are responsible for its further splitting, stretching, and subsequent transport over the sphere. We finish by briefly describing how to incorporate conservation of potential vorticity and the development of a model governing the probability density function associated with the point vortex system.  相似文献   

4.
he concept of point vortex motion, a classical model in the theory of two-dimensional, incompressible fluid mechanics, was introduced by Helmholtz in 1858. Exploration of the solutions to these equations has made fitful progress since that time as the point vortex model has been brought to bear on various physical situations: atomic structure, large scale weather patterns, “vortex street” wakes, vortex lattices in superfluids and superconductors, etc. The point vortex equations also provide an interesting example of transition to chaotic behavior. We give a brief historical introduction to these topics and develop two of them in particular to the point of current understanding: (i) Steadily moving configurations of point vortices; and (ii) Collision dynamics of vortex pairs.  相似文献   

5.
In this note we consider certain two-degree-of-freedom Hamiltonian systems which may be regarded as perturbations of integrable systems governed by a real parameter ε. We wish to study the stability, at fixed energy, of certain periodic solutions. Two constants are defined, computable in terms of the original Hamiltonian function and the energy. The main theorem then states that if these constants are not zero, the periodic solutions are isoenergetically stable for sufficiently small ε. The proof is an application of the Twist Theorem of Kolmogorov-Arnol'd-Moser. By way of illustration, we apply the theorem to a mechanical system consisting of coupled non-linear oscillators. The periodic solutions are the “normal modes” and ε governs the non-linearity of the system. One obtains stability criteria for arbitrary energies and small ε, or, alternatively, for arbitrary ε and small energies.  相似文献   

6.
Von Kármán was the first to present a quantitative model of the “vortex street” wake as a double row of point vortices, to determine which configurations propagate in the direction of the rows, and to consider the linear stability theory for such states. In the early literature one works with infinite rows of vortices. The vortex street is assumed to continue to infinity both upstream and downstream. Another analytical approach is to use periodic boundary conditions in the direction of the wake. This representation was used by Domm in his analysis of the instability of the Kármán vortex street. Birkhoff and Fisher in 1959 were the first to treat vortices in a periodic strip as a dynamical system in its own right. We have used the periodic system to address problems of vortex wake patterns, in particular vortex wakes that are more complicated than the traditional two-vortices-per-strip configurations. We use the term “exotic” for such wakes. We submit that this approach can yield a number of insights, including results of direct relevance to experiments, in the same sense that von Kármán's analysis has been helpful to the understanding of the regular vortex street wake, and we present the results obtained to date following this program.  相似文献   

7.
Analysis methodology for 3C-PIV data of rotary wing vortices   总被引:1,自引:0,他引:1  
3C-PIV data from tip vortices of either fixed-wing or rotating wing experiments are challenging from an analysis point of view. Model motion, vortex wander, spurious vectors, periodic and aperiodic effects, turbulence, and other disturbing effects are all present in the data. In most cases the vortices are not measured perpendicular to their axis as well. Engineers need time-averaged properties from the vortex in the vortex axis system for a proper modelization within simulation codes. This article describes the methods needed to deal with all the mentioned problem areas, including the conditional averaging and rotation into the vortex axis system. The methods are validated by using numerically generated vortex vector fields, and finally applied to experimental data from a hover condition of a model rotor.  相似文献   

8.
We study the existence of families of periodic solutions in a neighbourhood of a symmetric equilibrium point in two classes of Hamiltonian systems with involutory symmetry. In both classes, the involution reverses the sign of the Hamiltonian function, and the system is in 1:1 resonance. In the first class we study a Hamiltonian system with a reversing involution R acting symplectically. We first recover a result of Buzzi and Lamb showing that the equilibrium point is contained in a three dimensional conical subspace which consists of a two parameter family of periodic solutions with symmetry R, and furthermore that there may or may not exist two families of non-symmetric periodic solutions, depending on the coefficients of the Hamiltonian (correcting a minor error in their paper). In the second problem we study an equivariant Hamiltonian system with a symmetry S that acts anti-symplectically. Generically, there is no S-symmetric solution in a neighbourhood of the equilibrium point. Moreover, we prove the existence of at least 2 and at most 12 families of non-symmetric periodic solutions. We conclude with a brief study of systems with both forms of symmetry, showing they have very similar structure to the system with symmetry R.  相似文献   

9.
We study an idealized model of body–vortex interaction in two dimensions. The fluid is incompressible and inviscid and assumed to occupy the entire unbounded plane except for a simply connected region representing a rigid body. There may be a constant circulation around the body. The fluid also contains a finite number of point vortices of constant circulation but is otherwise irrotational. We assign a mass distribution to the body and let it move and rotate freely in response to the force and torque exerted by the fluid. Conversely, the fluid moves in response to the body motion. We study the occurrence of chaos in the system of ODEs emerging from these assumptions. It is well-known that the system consisting of a circular body with uniform mass distribution interacting with a single point vortex is integrable. Here we investigate how this integrability breaks down when the body center-of-mass is displaced from its geometrical center. We find two distinct regions of chaos and discuss how they relate to the topology of the trajectories of body and vortex.  相似文献   

10.
The motion of a dumbbell-shaped body (a pair of massive points connected with each other by a weightless rod along which the elevator, i.e., a third point, is moving according to a given law) in an attractive Newtonian central field is considered. In particular, such a mechanical system can be considered as a simplified model of an orbital cable system equipped with an elevator. The practically most interesting case where the cabin performs periodic ??shuttle??motions is studied. Under the assumption that the elevator mass is small compared with the dumbbell mass, the Poincaré theory is used to determine the conditions for the existence of families of system periodic motions analytically depending on the arising small parameter and passing into some stable radial steady-state motion of the unperturbed problem as the small parameter tends to zero. It is also proved that, for sufficiently small parameter values, each of the radial relative equilibria generates exactly one family of such periodic motions. The stability of the obtained periodic solutions is studied in the linear approximation, and these solutions themselves are calculated up to terms of the firstorder in the small parameter. The contemporary studies of the motion of orbital dumbbell systems apparently originated in Okunev??s papers [1, 2]. These studies were continued in [3], where plane motions of an orbit tether (represented as a dumbbell-shaped satellite) in a circular orbit were considered in the satellite approximation. In [4], in the case of equal masses and in the unbounded statement, the energy-momentum method was used to perform the dynamic reduction of the problem and analyze the stability of relative equilibria. A similar technique was used in [5], where, in contrast to the above-mentioned problems, the massive points were connected by an elastic spring resisting to compression and forming a dumbbell with elastic properties. Under such assumptions, the stability of radial configurations was investigated in that paper. The bifurcations and stability of steady-state configurations of a deformable elastic dumbbell were also studied in [6]. Various obstacles arising in the construction of orbital cable systems, in particular, the strong deformability of known materials, were discussed in [7]. In [8], the problem of orbital motion of a pair of massive points connected by an inextensible weightless cable was considered in the exact statement. In other words, it was assumed that a unilateral constraint is imposed on themassive points. The conditions of stability of vertical positions of the relative equilibria of the cable system, which were obtained in [8], can be used for any ratio of the subsatellite and station masses. In turn, these results agree well with the results obtained earlier in the studies of stability of vertical configurations in the case of equal masses of the system end bodies [3, 4]. One of the basic papers in the dynamics of three-body orbital cable systems is the paper [9]. The steady-state motions and their bifurcations and stability were studied depending on the elevator cabin position in [10].  相似文献   

11.
A nonlinear stochastic optimal control strategy for minimizing the first-passage failure of quasi integrable Hamiltonian systems (multi-degree-of-freedom integrable Hamiltonian systems subject to light dampings and weakly random excitations) is proposed. The equations of motion for a controlled quasi integrable Hamiltonian system are reduced to a set of averaged Itô stochastic differential equations by using the stochastic averaging method. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximization of reliability and mean first-passage time are formulated. The optimal control law is derived from the dynamical programming equations and the control constraints. The final dynamical programming equations for these control problems are determined and their relationships to the backward Kolmogorov equation governing the conditional reliability function and the Pontryagin equation governing the mean first-passage time are separately established. The conditional reliability function and the mean first-passage time of the controlled system are obtained by solving the final dynamical programming equations or their equivalent Kolmogorov and Pontryagin equations. An example is presented to illustrate the application and effectiveness of the proposed control strategy.  相似文献   

12.
Stationary vortex sheets in a two-dimensional stirring flow may be approximated by arrays of stationary point vortices arranged along the support of the sheets. These vortices lie at the roots of a polynomial that satisfies a generalized Lamé differential equation; the polynomial itself (not the roots) determines the complex potential and stream function. In this paper, sufficient conditions for the stirring flow are found so that the differential equation has two independent polynomial solutions with simple closed-form expressions, analogous to hypergeometric polynomials. The corresponding point vortex array then depends on a complex parameter that controls the location of the sheet, so that it may pass through any selected point. Stationary sheets in a periodic flow are approximated by the same method.  相似文献   

13.
A strategy is proposed based on the stochastic averaging method for quasi nonintegrable Hamiltonian systems and the stochastic dynamical programming principle. The proposed strategy can be used to design nonlinear stochastic optimal control to minimize the response of quasi non-integrable Hamiltonian systems subject to Gaussian white noise excitation. By using the stochastic averaging method for quasi non-integrable Hamiltonian systems the equations of motion of a controlled quasi non-integrable Hamiltonian system is reduced to a one-dimensional averaged Ito stochastic differential equation. By using the stochastic dynamical programming principle the dynamical programming equation for minimizing the response of the system is formulated.The optimal control law is derived from the dynamical programming equation and the bounded control constraints. The response of optimally controlled systems is predicted through solving the FPK equation associated with It5 stochastic differential equation. An example is worked out in detail to illustrate the application of the control strategy proposed.  相似文献   

14.
This is a review article of recent research developments on the motion of a polygonal ring configuration of vortex structures with singular vorticity distributions in incompressible and inviscid flows on a non-rotating sphere. Numerical computation of a single vortex sheet reveals that the Kelvin-Helmholtz instability gives rise to the formation of a polygonal ring arrangement of rolling-up spirals. An application of methods of Hamiltonian dynamics to the N-vortex problem on the sphere shows that the motion of the ring configuration of homogeneous point vortices, which is a simple model for the rolling-up spirals, becomes chaotic after a long time evolution. Some remarks on an extension of the present research and a generic non-self-similar collapse are also provided.  相似文献   

15.
非自旋航天器混沌姿态运动及其参数开闭环控制   总被引:12,自引:0,他引:12  
陈立群  刘延柱 《力学学报》1998,30(3):363-369
研究万有引力场中受大气阻力且存在结构内阻尼的非自旋航天器在椭圆轨道上平面天平动的混沌及其参数开闭环控制问题.在建立数学模型的基础上确定出现混沌的必要条件并数值验证混沌的存在性,提出非线性振动系统混沌运动的参数开闭环控制并应用于控制航天器的混沌姿态运动.  相似文献   

16.
Relative equilibria, collapse, and scattering of point vortices in the plane are studied. Vortex systems with arbitrary choice of circulations are considered. An ordinary differential equation satisfied by polynomials with roots at the vortex positions is found. Explicit expressions for vortex double-ring configurations in the cases of two regular polygons, three regular polygons, and a quadrangle with a digon are obtained.  相似文献   

17.
An n degree-of-freedom Hamiltonian system with r(1<r<n) independent first integrals which are in involution is called partially integrable Hamiltonian system and a partially integrable Hamiltonian system subject to light dampings and weak stochastic excitations is called quasi partially integrable Hamiltonian system. In the present paper, the averaged Itô and Fokker-Planck-Kolmogorov (FPK) equations for quasi partially integrable Hamiltonian systems in both cases of non-resonance and resonance are derived. It is shown that the number of averaged Itô equations and the dimension of the averaged FPK equation of a quasi partially integrable Hamiltonian system is equal to the number of independent first integrals in involution plus the number of resonant relations of the associated Hamiltonian system. The technique to obtain the exact stationary solution of the averaged FPK equation is presented. The largest Lyapunov exponent of the averaged system is formulated, based on which the stochastic stability and bifurcation of original quasi partially integrable Hamiltonian systems can be determined. Examples are given to illustrate the applications of the proposed stochastic averaging method for quasi partially integrable Hamiltonian systems in response prediction and stability decision and the results are verified by using digital simulation.  相似文献   

18.
This work is an investigation on the roots of chaotic attitudinal motion in a class of asymmetrical gyrostat satellites. The result shows that for a class of Kelvin type gyrostat satellite, there is an equivalent rigid spinning satellite with the same attitude dynamics. Finding some constants of motion and eliminating the cyclic coordinates, the rotational kinetic energy is changed to a quadratic form and using Jordan canonical form of the associated inertia tensor and transforming the coordinate system, the Hamiltonian has been changed to those of a rigid satellite. The Hamiltonian has been split into integrable and non-integrable parts. Using Deprit canonical transformation and Andoyer variables the integrable part has been reduced to a one-dimensional form. The reduced Hamiltonian shows that the regular dynamics of the satellite can be chaotic, under the influence of gravitational effects. To demonstrate various attitudinal dynamics of the satellite, a second-order Poincaré map is employed. This research shows firstly, that the attitudinal dynamics of Kelvin type gyrostat satellites and rigid satellites follow the same dynamical patterns, secondly, for non-linear analysis of dynamics of gyrostat satellite based on the perturbation methods, there is a preferable form for Hamiltonian of the system in the near-integrable fashion and thirdly the chaotic motion is originated from the gravitational field effects that can be suppressed by increasing the attitudinal energy of the satellite in comparison with the translational energy.  相似文献   

19.
Interaction of an incident vortex street with an oscillating cylinder is addressed using high-image-density particle image velocimetry and simultaneous force measurements. This approach reveals that the timing of the incident vortices relative to the cylinder motion controls the large-scale vortex formation in the near-wake, and thereby the phase shift between the loading on the cylinder and its motion. As a consequence, it is possible to change the sign of the fluid-dynamic work done by the fluid on the cylinder. The incident vortices dramatically shorten the formation length of vortices in the near-wake and yield values of lift coefficient up to a factor of five larger than that for an isolated cylinder subjected to controlled oscillations in the absence of incident vortices. These alterations of the wake structure and loading occur in conjunction with globally locked-on patterns of incident and shed vortices with respect to the cylinder oscillation. Different states of global lock-on are attainable for different values of timing of the incident vortices.  相似文献   

20.
The approximate transient response of quasi integrable Hamiltonian systems under Gaussian white noise excitations is investigated. First, the averaged Ito equations for independent motion integrals and the associated Fokker-Planck-Kolmogorov (FPK) equation governing the transient probability density of independent motion integrals of the system are derived by applying the stochastic averaging method for quasi integrable Hamiltonian systems. Then, approximate solution of the transient probability density of independent motion integrals is obtained by applying the Galerkin method to solve the FPK equation. The approximate transient solution is expressed as a series in terms of properly selected base functions with time-dependent coefficients. The transient probability densities of displacements and velocities can be derived from that of independent motion integrals. Three examples are given to illustrate the application of the proposed procedure. It is shown that the results for the three examples obtained by using the proposed procedure agree well with those from Monte Carlo simulation of the original systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号