首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of the determination of Green’s function in conduction for a rectilinearly anisotropic solid with an exponential grading along a certain direction is studied. Domains of an unbounded space and a half-space, either three-dimensional or two-dimensional, are considered. Along the boundary of the domain, homogeneous boundary conditions of the first and second kinds are imposed. We find interestingly that, under this specific type of grading, the Green’s functions permit an algebraic decomposition, which will in turn greatly simplify the formulation. The method of Fourier transform is employed for the Green’s function for a half-space or a half-plane. Although the derivation process is quite tedious, we show analytically that the inverse transform can be found exactly and their resulting expressions are surprisingly neat and compact. In addition, both steady-state and transient-state field solutions are considered. By taking Laplace transform with respect to the time variable, we show that the mathematical frameworks for the steady-state and transient-state Green’s functions are entirely analogous. Thereby, the transient-state Green’s function is readily obtained by taking Laplace inverse transform back to the time domain. These derived fundamental solutions will serve as benchmark results for modeling some inhomogeneous materials. In the absence of grading term, we have verified analytically that our solutions agree exactly with previously known Green’s functions for homogeneous media.  相似文献   

2.
The present paper describes an efficient algorithm to integrate the equations of motion implicitly in the frequency domain. The standard FEM displacement model (Galerkin formulation) is employed to perform space discretization, and the time-marching process is carried out through an algorithm based on the Green’s function of the mechanical system in nodal coordinates. In the present formulation, mechanical system Green’s functions are implicitly calculated in the frequency domain. Once the Green’s functions related matrices are computed, a time integration procedure, which demands low computational effort when applied to non-linear mechanical systems, becomes available. At the end of the paper numerical examples are presented in order to illustrate the accuracy of the present approach.  相似文献   

3.
半无限弹性空间域内点加振格林函数的计算   总被引:6,自引:0,他引:6  
林皋  李炳奇  申爱国 《力学学报》1994,26(5):583-592
本文给出了满足全部自由面边界条件的半无限弹性空间域内点加振的Green函数,利用变形的Hankel函数,在复数域内进行无限积分的有限化,从而使Green函数的计算变得比较简单和方便。  相似文献   

4.
Based on Biot’s theory, the dynamic 2.5-D Green’s function for a saturated porous medium is obtained using the Fourier transform and the potential decomposition methods. The 2.5-D Green’s function corresponds to the solutions for the following two problems: the point force applied to the solid skeleton, and the dilatation source applied within the pore fluid. By performing the Fourier transform on the governing equations for the 3-D Green’s function, the governing differential equations for the two parts of the 2.5-D Green’s function are established and then solved to obtain the dynamic 2.5-D Green’s function. The derived 2.5-D Green’s function for saturated porous media is verified through comparison with the existing solution for 2.5-D Green’s function for the elastodynamic case and the closed-form 3-D Green’s function for saturated porous media. It is further demonstrated that a simple form 2-D Green’s function for saturated porous media can be been obtained using the potential decomposition method.  相似文献   

5.
The inverse of a linear differential operator is an integral operator with a kernel which is commonly known as the Green’s function of the differential operator. Therefore, the knowledge of the Green’s function of a linear problem leads directly to an integral representation of its solution. Any Green’s function is split into a singular part that carries the localized singularity of the Dirac measure and a regular part that is controlled by the Dirichlet boundary condition. In some relatively simple cases, this regular part can be interpreted as the contribution of imaginary sources which lie in the complement of the fundamental domain. If a problem is associated with the Laplace operator, such as the biharmonic operator or the Papkovitch potentials, which both govern Linear Elastostatics, the construction of such Green’s functions are of extremely large importance. All these are well-behaving procedures as long as we live in the highly symmetric geometry represented by the spherical system. But, if we live in a directional-dependent environment, such as the one imposed by the ellipsoidal geometry, the above procedures become extremely complicated, if not impossible. In the present work, the Green’s functions and their Kelvin image systems are obtained for the interior and the exterior regions of an ellipsoid. It is amazing, although not unjustified, that besides the point image source, that is needed for the isotropic spherical case, in the case of ellipsoidal domains, the necessary image system involves a full two-dimensional distribution of imaginary sources to account for the anisotropic character of the ellipsoidal domains.  相似文献   

6.
This paper presents a method of superposition for the half-space Green’s functions of a generally anisotropic material subjected to an interior point loading. The mathematical concept is based on the addition of a complementary term to the Green’s function in an anisotropic infinite domain. With the two-dimensional Fourier transformation, the complementary term is derived by solving the generalized Stroh eigenrelation and satisfying the boundary conditions on the free surface with the use of Green’s functions in the full-space case. The inverse Fourier transform leads to the contour integrals, which can be evaluated with the application of Cauchy residue theorem. Application of the present results is made to obtain analytical expression for the orthotropic materials which were not reported previously. The closed-form solutions for the transversely isotropic and isotropic materials derived directly from the solutions as being a special case are also given in this paper.  相似文献   

7.
Green’s functions for Biot’s dynamic equation in the frequency domain can be a highly useful tool for the investigation of dynamic responses of a saturated porous medium. Its applications are found in soil dynamics, seismology, earthquake engineering, rock mechanics, geophysics, and acoustics. However, the mathematical work for deriving it can be daunting. Green’s functions have been presented utilizing an analogy between the dynamic thermoelasticity and the dynamic poroelasticity in the frequency domain using the u-p formulation. In this work, a special term “decoupling coefficient” for the decomposition of the fast and slow dilatational waves is proposed and expressed to present a new methodology for deriving the poroelastodynamic Green’s functions. The correctness of the solution is demonstrated by numerically comparing the current solution with Cheng’s previous solution. The separation of the two waves in the present methodology allows the more accurate evaluation of Green’s functions, particularly the solution of the slow dilatational wave. This can be advantageous for the numerical implementation of the boundary element method (BEM) and other applications.  相似文献   

8.
We derive the static and dynamic Green’s functions for one-, two- and three-dimensional infinite domains within the formalism of peridynamics, making use of Fourier transforms and Laplace transforms. Noting that the one-dimensional and three-dimensional cases have been previously studied by other researchers, in this paper, we develop a method to obtain convergent solutions from the divergent integrals, so that the Green’s functions can be uniformly expressed as conventional solutions plus Dirac functions, and convergent nonlocal integrals. Thus, the Green’s functions for the two-dimensional domain are newly obtained, and those for the one and three dimensions are expressed in forms different from the previous expressions in the literature. We also prove that the peridynamic Green’s functions always degenerate into the corresponding classical counterparts of linear elasticity as the nonlocal length tends to zero. The static solutions for a single point load and the dynamic solutions for a time-dependent point load are analyzed. It is analytically shown that for static loading, the nonlocal effect is limited to the neighborhood of the loading point, and the displacement field far away from the loading point approaches the classical solution. For dynamic loading, due to peridynamic nonlinear dispersion relations, the propagation of waves given by the peridynamic solutions is dispersive. The Green’s functions may be used to solve other more complicated problems, and applied to systems that have long-range interactions between material points.  相似文献   

9.
By virtue of two systems of vector functions and the propagator matrix method, Green’s functions for transversely isotropic, piezoelectric functionally graded (exponentially graded in the vertical direction), and multilayered half spaces are derived. It is observed that the homogeneous solution and propagator matrices for each functionally graded layer in the transformed domain are independent of the choice of the two systems of vector functions. For a point force and point charge density applied at any location of the functionally graded half space, Green’s functions are expressed in terms of one-dimensional infinite integrals. To carry out the numerical integral involving Bessel functions, an adaptive Gauss quadrature approach is introduced and modified. The piezoelectric functionally graded Green’s functions include those in the corresponding elastic functionally graded media as special results with the latter being also unavailable in the literature. Two piezoelectric functionally graded half-space models are analyzed numerically: one is a functionally graded PZT-4 half space, and the other a coated functionally graded PZT-4 layer over a homogeneous BaTiO3 half space. The effects of different exponential factors on Green’s function components are clearly demonstrated, which could be useful in the design and manufacturing of piezoelectric functionally graded structures.  相似文献   

10.
The paper presents studies on the Green’s function for thermomagnetoelectroelastic medium and its reduction to the contour integral. Based on the previous studies the thermomagnetoelectroelastic Green’s function is presented as a surface integral over a half-sphere. The latter is then reduced to the double integral, which inner integral is evaluated explicitly using the complex variable calculus and the Stroh formalism. Thus, the Green’s function is reduced to the contour integral. Since the latter is evaluated over the period of the integrand, the paper proposes to use trapezoid rule for its numerical evaluation with exponential convergence. Several numerical examples are presented, which shows efficiency of the proposed approach for evaluation of Green’s function in thermomagnetoelectroelastic anisotropic solids.  相似文献   

11.
Green’s functions of a point dislocation as well as a concentrated force for the plane problem of an infinite plane containing an arbitrarily shaped hole under stress, displacement, and mixed boundary conditions are stated. The Green’s functions are obtained in closed forms by using the complex stress function method along with the rational mapping function technique, which makes it possible to deal with relatively arbitrary configurations. The stress functions for these problems consist of two parts: a principal part containing singular and multi-valued terms, and a complementary part containing only holomorphic terms. These Green’s functions can be derived without carrying out any integration. The applications of the Green’s functions are demonstrated in studying the interaction of debonding and cracking from an inclusion with a line crack in an infinite plane subjected to remote uniform tension. The Green’s functions should have many other potential applications such as in boundary element method analysis. The boundary integral equations can be simplified by using the Green’s functions as the kernels.  相似文献   

12.
The elastic field caused by the lattice mismatch between the quantum wires and the host matrix can be modeled by a corresponding two-dimensional hydrostatic inclusion subjected to plane strain conditions. The stresses in such a hydrostatic inclusion can be effectively calculated by employing the Green’s functions developed by Downes and Faux, which tend to be more efficient than the conventional method based on the Green’s function for the displacement field. In this study, Downes and Faux’s paper is extended to plane inclusions subjected to arbitrarily distributed eigenstrains: an explicit Green’s function solution, which evaluates the stress field due to the excitation of a point eigenstrain source in an infinite plane directly, is obtained in a closed-form. Here it is demonstrated that both the interior and exterior stress fields to an inclusion of any shape and with arbitrarily distributed eigenstrains are represented in a unified area integral form by employing the derived Green’s functions. In the case of uniform eigenstrain, the formulae may be simplified to contour integrals by Green’s theorem. However, special care is required when Green’s theorem is applied for the interior field. The proposed Green’s function is particularly advantageous in dealing numerically or analytically with the exterior stress field and the non-uniform eigenstrain. Two examples concerning circular inclusions are investigated. A linearly distributed eigenstrain is attempted in the first example, resulting in a linear interior stress field. The second example solves a circular thermal inclusion, where both the interior and exterior stress fields are obtained simultaneously.  相似文献   

13.
A concise formulation is presented for the derivatives of Green’s functions of three-dimensional generally anisotropic elastic materials. Direct calculation for derivatives of the Green’s function on the Cartesian coordinate system is a common practice, which, however, usually leads to a complicated course. In this paper the Green’s function derived by Ting and Lee [Ting, T.C.T., Lee, V.G., 1997. The three-dimensional elastostatic Green’s function for general anisotropic linear elastic solids. The Quarterly Journal of Mechanics and Applied Mathematics 50 (3) 407–426] is extended to obtain the derivatives. Using a spherical coordinate system, the Green’s function can be shown as the composition of two independent functions, one depends only on the radial distance of the field point to the origin and the other is in spherical angles. The method of derivation is based on the total differential scheme and then takes its partial differentiation accordingly. With the application of Cauchy residue theorem, the contour integral can be evaluated in terms of the Stroh eigenvalues of a sextic equation. For the degenerate case, evaluation of residues at multiple poles is also given. Applications of the present result are made to examine the Green’s functions and stress components for isotropic and transversely isotropic materials. The results are in exact agreement with existing solutions.  相似文献   

14.
The three-dimensional Green’s functions due to a point force in composite laminates are solved by using generalized Stroh formalism and two-dimensional Fourier transforms. Each layer of the composite is generally anisotropic and linearly elastic. The interfaces between different layers are parallel to the top and bottom surfaces of the composite and are perfectly bonded. The Green’s functions of point forces applied at the free surface, interface, and in the interior of a layer are derived in the Fourier transformed domain respectively. The surfaces are imposed by a proportional spring-type boundary condition. The spring-type condition may be reduced to traction-free, displacement-fixed, and mirror-symmetric conditions. Numerical examples are given to demonstrate the validity and elegance of the present formulation of three-dimensional point-force Green’s functions for composite laminates.  相似文献   

15.
The derivation of Green’s correlation naturally arises when identifying a linear propagation medium with uncontrolled random sources or ambient noise. As expected, this involves convolution of the well known Green’s function with its time-reversed version. The purpose of this paper is to derive a general expression of Green’s correlation function of a linear visco-acoustic propagation medium, in which the pressure field satisfies Stokes’ equation. From the expression obtained for a visco-acoustic medium, the Ward identity that was recently obtained for unbounded media is extended to the case of bounded propagation media. This extension appears necessary as the unbounded model is not valid in many practical cases, as for acoustic rooms for example. It is illustrated with both simulations and real-world aerial acoustics experimental data recorded in a closed room and in the framework of passive identification. In these experiments, Green’s correlation is estimated by the classical coda-based approach, and the performances are studied in this new context.  相似文献   

16.
The 3-D boundary integral equation is derived in terms of the reciprocal work theorem and used along with the 2.5-D Green’s function developed in Part I [Lu, J.F., Jeng, D.S., Williams, S., submitted for publication. A 2.5-D dynamic model for a saturated porous medium: Part I. Green’s function. Int. J. Solids Struct.] to develop the 2.5-D boundary integral equation for a saturated porous medium. The 2.5-D boundary integral equations for the wave scattering problem and the moving load problem are established. The Cauchy type singularity of the 2.5-D boundary integral equation is eliminated through introduction of an auxiliary problem and the treatment of the weakly singular kernel is also addressed. Discretisation of the 2.5-D boundary integral equation is achieved using boundary iso-parametric elements. The discrete wavenumber domain solution is obtained via the 2.5-D boundary element method, and the space domain solution is recovered using the inverse Fourier transform. To validate the new methodology, numerical results of this paper are compared with those obtained using an analytical approach; also, some numerical results and corresponding analysis are presented.  相似文献   

17.
By virtue of a complete set of displacement potential functions and Hankel transform, the analytical expressions of Green’s function of an exponentially graded elastic transversely isotropic half-space is presented. The given solution is analytically in exact agreement with the existing solution for a homogeneous transversely isotropic half-space. Employing a robust asymptotic decomposition technique, the Green’s function is decomposed to the closed-form Green’s function corresponding to the homogeneous transversely isotropic half-space and grading term with strong decaying integrands. This representation is very useful for numerical methods which are based on boundary-integral formulations such as boundary-element method since the numerically evaluated part is not responsible for the singularity. The high accuracy of the proposed numerical scheme is confirmed by some numerical examples.  相似文献   

18.
We establish exact mathematical links between the n-dimensional anisotropic and isotropic Green’s functions for diffusion phenomena for an infinite space, a half-space, a bimaterial and a multilayered space. The purpose of this work is not to attempt to present a solution procedure, but to focus on the general conditions and situations in which the anisotropic physical problems can be directly linked with the Green’s functions of a similar configuration with isotropic constituents. We show that, for Green’s functions of an infinite and a half-space and for all two-dimensional configurations, the exact correspondences between the anisotropic and isotropic ones can always be established without any regard to the constituent conductivities or any other information. And thus knowing the isotropic Green’s functions will readily provide explicit expressions for anisotropic Green’s functions upon back transformation. For three- and higher-dimensional bimaterials and layered spaces, the correspondence can also be found but the constituent conductivities need to satisfy further algebraic constraints. When these constraints are fully satisfied, then the anisotropic Green’s functions can also be obtained from those of the isotropic ones, or at least in principle.  相似文献   

19.
By the analysis for the vectors of a wave field in the cylindrical coordinate and Sommerfeld's identity as well as Green's functions of Stokes' solution pertaining the conventional elastic dynamic equation, the results of Green's function in an infinite space of an axisymmetric coordinate are shown in this paper. After employing a supplementary influence field and the boundary conditions in the free surface of a senti-space, the authors obtain the solutions of Green's function for Lamb's dynamic problem. Besides, the vertical displacement uzz and the radial displacement urz can match Lamb's previous results, and the solutions of the linear expansion source u~r and the linear torsional source uee are also given in the paper. The authors reveal that Green's function of Stokes' solution in the semi-space is a comprehensive form of solution expressing the dynamic Lamb's problem for various situations. It may benefit the investigation of deepening and development of Lamb's problems and solution for pertinent dynamic problems conveniently.  相似文献   

20.
The Green’s functions of a two-phase saturated medium subjected to a concentrated force are known to play an important role in seismology, earthquake engineering, soil dynamics, geophysics, and dynamic foundation theory. This paper presents a physical method for obtaining the dynamic Green’s functions of a two-phase saturated medium for materials considered to be isotropic and for low frequencies. First, the pore-fluid pressure in a two-phase saturated medium is divided into two parts: flow pressure and deformation pressure. Next, based on the compatibility condition of Biot’s equation and the property of the δ-function, the problem of coupled_fast and slow dilational waves is solved using the decomposition condition of the potential dilation field. The Green’s function for a concentrated force is then obtained by solving Biot’s complex modular equations, and their physical characteristics are discussed. The behavior of Green’s functions for the solid and fluid phases of a δ-impulsive force is investigated, from which the Green’s functions for a unit Heaviside force are also obtained by time integration. Finally, the present Green’s functions for a unit Heaviside force are compared with those obtained by a purely mathematical method; the two differ in form, but the numerical results are identical. The physical meaning of the expressions of Green’s functions obtained in this paper is evident. Therefore, the results may benefit future research on the dynamic responses of a two-phase saturated medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号