首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 301 毫秒
1.
根据分子结构的特点 ,用距离矩阵表征分子中原子的连接性 ,用染色因子标识原子性质的差异 ,探讨了烷烃的沸点与分子结构之间的定量关系 ,据此发展了一种直接根据分子结构信息计算烷烃沸点的方法。对75 2种烷烃 (C1到C10 0 )的计算结果表明 ,沸点的预测值十分接近实验值 ,平均绝对误差 1.36K ,平均相对误差 0 .2 9% ,计算精度优于文献方法。  相似文献   

2.
吴烈钧 《色谱》1986,4(4):197-201
〕本文提出了根据直链烯烃的沸点和分子结构精密地计算其保留指数,以及相反地根据保留指数和分子结构计算其沸点的公式,并计算了在角鲨烷固定液上86℃时71个C3-C1直链烯烃的保留指数值和11个C3直链烯烃的沸点值。△I值和△Tb值的标准偏差分别为0.8指数单位和0.15℃。  相似文献   

3.
脂肪醛和脂肪酮的沸点与分子结构关系的拓扑化学研究   总被引:7,自引:0,他引:7  
王克强 《有机化学》1998,18(5):419-424
根据分子拓扑学原理,通过采用信息量丰富的染色分子图代替隐氢图,借助于距离矩阵表征分子图中顶点的连接性和标识分子图中顶点性质的差异,发展了一种适用于含杂原子分子体系结构性能研究的新方法,据此探讨了脂肪醛和脂肪酮的沸点与分子结构之间的关系,提出一个既能合理表征结构性能关系、又能预测沸点的定量关系式。结果表明,沸点预测值与实验值的一致性令人满意,平均误差0.21%。  相似文献   

4.
计算烷烃沸点的新方法-基团键贡献法   总被引:2,自引:0,他引:2  
王克强  王捷 《有机化学》2001,21(10):751-754
根据分子中基团的特性和连接性,将基团贡献法和化学键贡献法结合在一起,发展了一种直接根据分子结构信息计算烷烃沸点的新方法-基团键贡献法,此方法同时具有基团贡献法和化学键贡献法的特点。对753种烷烃(C2~C100)的计算结果表明,沸点计算值与实验值的一致性令人满意,平均误差0.46%。  相似文献   

5.
李志清  邱潇杨  娄江  王强 《有机化学》2021,(11):4192-4207
单氟烯烃结构单元广泛存在于药物及天然产物等复杂功能分子中,同时也是重要的有机合成子,在医药、生物和材料等领域具有广泛的应用.因此,开发绿色、经济且高效的合成单氟烯烃化合物的方法具有重要的科学意义和现实价值.偕二氟烯烃C—F键官能化是制备单氟烯烃化合物的有效手段,总结了在可见光氧化还原催化、可见光氧化还原/过渡金属协同催化条件下实现偕二氟烯烃C—F键官能化反应的研究进展,主要介绍了底物适用范围、反应机理和合成应用,并对它的发展前景进行了展望.  相似文献   

6.
在烯烃的顺式与反式异构体中, 处于碳碳双键两端的顶点间的距离是不同的. 可根据几何原理计算与双键相连的顶点间的空间距离, 并以此构造分子图的修正距离矩阵来区分这种差异.按照我们已报导的顶点度-距离指数(VDI)和边度-距离指数(EDI)的计算方法, 用修正距离矩阵(MD)代替距离矩阵(D), 得到修正的顶点度-距离指数(MVDI)和修正的边度-距离指数(MEDI). 这两个参数能较好地区分烯烃顺反异构体的分子结构信息.对烯烃顺反异构体的沸点(b. p.)、折光率(nD 20)、密度(D20)及摩尔折光率(nM)等物化性质进行定量相关, 得到模型方程的相关系数(R)分别为0.9981、0.9570、0.9884和0.9999. 同时, 交叉验证和随机抽样预测结果表明模型具有良好的稳定性和较强的预测能力.  相似文献   

7.
牛鲁娜  刘泽龙  周建  蔡新恒  田松柏 《色谱》2014,32(11):1236-1241
建立了全二维气相色谱-飞行时间质谱(GC×GC-TOF MS)分析柴油馏分中饱和烃的分子组成的方法。结合谱库检索、质谱图解析、沸点与分子结构关系和全二维谱图特征,定性(或归类)了焦化柴油饱和烃组分中1057个化合物单体,其中正构烷烃排列规律性最强,一环~三环环烷烃按照极性和沸点的差异呈瓦片状分布在其上方。另外,还准确区分了在一维气相色谱上共流出的正构烷基环己烷和正构烷基环戊烷,以及正构 α 单烯烃。根据质谱采集的总离子流色谱图,采用峰面积归一化法得到了饱和烃组分的碳数分布结果,并将该方法应用于研究不同类型柴油馏分饱和烃的分子组成特点。结果表明,催化裂化和焦化柴油馏分饱和烃组分的化合物类型和分布各不相同。分子组成分析能为油品加工工艺机理的研究提供方法支持。  相似文献   

8.
量化参数对脂肪醇的Tb,-1gSW,1gKOW的QSPR研究   总被引:1,自引:0,他引:1  
利用C-O键上C原子电荷Qc和分子所含C原子个数Ⅳ作为醇分子结构描述符对其沸点巩、在水中的溶解度Sw及辛醇/水分配系数(k)进行了QSPR研究.Qc的计算采用Chemoffice 8.0中的MOPAC-AM1量子化学法,容易获取,它表征了醇分子同分异构体之间的结构差异.多元回归分析结果表明醇分子的Tb,-lg Sw,lgKow都随分子所含C原子数Ⅳ的增加而增加,随着C-O键上C原子电荷Qc的增大而减小,复相关系数均在0.99以上.MOPAC-AM1方法计算的量化参数Qc用于与脂肪醇的水溶解性关联优于分子连接性指数.  相似文献   

9.
朱鑫璋  朱昌中 《化学通报》1995,(7):31-33,35
根据分子的结构特点,提出了可反映单烯烃分子大小、支化度和形状等结构信息的一组拓扑参量。在此基础上,用多元回归分析建立了这组拓扑参量和单烯烃密度的定量关系。  相似文献   

10.
正庚烷在HZSM-5催化剂上的催化裂解行为   总被引:1,自引:0,他引:1  
以正庚烷为轻质直馏石脑油中烷烃的模型化合物,研究了它在HZSM-5催化剂上的裂解反应,并与1-庚烯裂解反应进行了对比,考察了水热处理和载体性质对裂解反应的影响.结果表明:正庚烷裂解产物中的氢气、甲烷和乙烷等小分子烷烃的含量远高于1-庚烯裂解的情况,推测主要由烷烃独特的单分子裂解路径造成,并且液化气(LPG)中丙烯、丁烯等低碳烯烃含量低;催化剂经水热处理后,酸量急剧减少,并且强B酸(Bronsted acid)的相对含量减少,导致催化剂的活性显著降低,氢转移反应减少,裂化气中烯烃度显著提高.同时,产物中C3/C4的摩尔比降低,推测裂解反应中单分子路径的几率减少.载体对于正庚烷的裂解反应行为也有较大的影响,载体中L酸(Lewis acid)的存在,对于正庚烷的转化有促进作用,提高了双分子裂解路径在初始反应中所占的比例.总体来说,与烯烃分子相比,烷烃具有较低的反应活性和烯烃选择性,因此对于在分子筛类催化剂上的催化裂解反应以生产低碳烯烃来说,并不是一种理想的原料.  相似文献   

11.
The context of molecular structronics (from “molecular structure” and “electronics”) is that of molecular-level electrochemical storage of energy of sustainable origin (wind, solar). Due to its discontinuous availability, storage of this energy is a key issue. The targeted type of storage relies on implementing “electron reservoirs” within the structronic molecules by electrochemically forming dedicated chemical bonds according to non-catalytic processes. Reservoir bonds are therefore integral parts of the molecular backbone of structronic assemblies. When filled, electron reservoirs manifest themselves in the form of elongated covalent bonds that are to be cleaved for electron releasing (discharging) on demand. The scope of this short review is limited to pyridinium electrophores as particularly suited building blocks for the development of structronics.  相似文献   

12.
We construct a hydrogen‐bond based metal–molecule–metal junction, which contains two identical “reader” molecules, one single DNA base as a bridged molecule, and two titanium nitride electrodes. Hydrogen bonds are formed between “reader” molecules and DNA base, whereas titanium–sulfur bonds are formed between “reader” molecules and titanium nitride electrodes. We perform electronic structure calculations for both the bare bridged molecule and the full metal–molecule–metal system. The projected density of states shows that when the molecule is connected to the titanium nitride electrode, the energy levels of the bridged molecule are shifted, with an indirect effect on the hydrogen bonds. This is similar to the case for a gold electrode but with a more pronounced effect. We also calculate the current–voltage characteristics for the molecular junctions containing each DNA base. Results show that titanium nitride as an electrode can generate distinct conductance for each DNA base, providing an alternative electrode for DNA sequencing. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
14.
A stable 2:1 complex of 6-phenyl-2-chloropyrimidine-4-carboxamide with dioxane has been synthesized. The structure of the complex was investigated by molecular spectroscopy (chloroform solution), thermoderivatography, and XRD (crystalline phase). A supramolecular structure is formed in the crystal of the complex, which involves centrosymmetric dimer associates of amide molecules, linked by dioxane molecules and intermolecular hydrogen bonds into infinite stepwise ribbons. These ribbons are stacked via π-stacking pair interactions “amidopyrimidine-amidopyrimidine.” The complex of the same 2:1 carboxamido derivative of pyrimidine with ethanol is unstable and has a different structure. The ethanol molecules lie in the vacant voids of the stacks formed by the “amidopyrimidine-amidopyrimidine” synthon.  相似文献   

15.
The structures of eight symmetrically independent molecules of 2-methyl-2,4-pentanediol (MPD) in six crystal substances are studied based on the data retrieved from the Cambridge Structural Database (CSD). Coordinates of the most part of hydrogen atoms in MPD molecules were not determined experimentally or not presented in CSD, however, O...O distances provide the conclusion about the formation of intramolecular hydrogen bonds in four molecules. To perform quantum chemical calculations the absent hydrogen atoms were added. The choice of H atomic positions in hydroxyl groups are based on the analysis of possible formation of intra- and intermolecular hydrogen bonds by MPD molecules in the respective crystals. The DFT method with the B3PW91 functional and the 6-31G(d,p) basis set is used to carry out for the first time: 1) the calculation of dipole moments and energies for MPD molecules in “crystal” conformations; 2) the optimization of the structure of these molecules with the calculation of dipole moments for the conformations corresponding to the local energy minima. It is found that among the molecules with the experimental geometric parameters one of the conformations without intramolecular hydrogen bonds is most favorable (μ = 0.56 D). As a result of the energy minimization of eight “crystal” conformations in vacuum, five energetically different conformers are obtained. Among them the conformer with the intramolecular hydrogen bond has the lowest energy (μ = 3.53 D). Four variants of the molecular structure correspond to it in the considered crystals, out of which two are R-enantiomers and two S-enantiomers.  相似文献   

16.
It is argued that some elusive “entropic” characteristics of chemical bonds, e.g., bond multiplicities (orders), which connect the bonded atoms in molecules, can be probed using quantities and techniques of Information Theory (IT). This complementary perspective increases our insight and understanding of the molecular electronic structure. The specific IT tools for detecting effects of chemical bonds and predicting their entropic multiplicities in molecules are summarized. Alternative information densities, including measures of the local entropy deficiency or its displacement relative to the system atomic promolecule, and the nonadditive Fisher information in the atomic orbital resolution(called contragradience) are used to diagnose the bonding patterns in illustrative diatomic and polyatomic molecules. The elements of the orbital communication theory of the chemical bond are briefly summarized and illustrated for the simplest case of the two-orbital model. The information-cascade perspective also suggests a novel, indirect mechanism of the orbital interactions in molecular systems, through “bridges” (orbital intermediates), in addition to the familiar direct chemical bonds realized through “space”, as a result of the orbital constructive interference in the subspace of the occupied molecular orbitals. Some implications of these two sources of chemical bonds in propellanes, π-electron systems and polymers are examined. The current–density concept associated with the wave-function phase is introduced and the relevant phase-continuity equation is discussed. For the first time, the quantum generalizations of the classical measures of the information content, functionals of the probability distribution alone, are introduced to distinguish systems with the same electron density, but differing in their current(phase) composition. The corresponding information/entropy sources are identified in the associated continuity equations.  相似文献   

17.
Examination of nature's favorite molecules reveals a striking preference for making carbon–heteroatom bonds over carbon–carbon bonds—surely no surprise given that carbon dioxide is nature's starting material and that most reactions are performed in water. Nucleic acids, proteins, and polysaccharides are condensation polymers of small subunits stitched together by carbon–heteroatom bonds. Even the 35 or so building blocks from which these crucial molecules are made each contain, at most, six contiguous C−C bonds, except for the three aromatic amino acids. Taking our cue from nature's approach, we address here the development of a set of powerful, highly reliable, and selective reactions for the rapid synthesis of useful new compounds and combinatorial libraries through heteroatom links (C−X−C), an approach we call “click chemistry”. Click chemistry is at once defined, enabled, and constrained by a handful of nearly perfect “spring‐loaded” reactions. The stringent criteria for a process to earn click chemistry status are described along with examples of the molecular frameworks that are easily made using this spartan, but powerful, synthetic strategy.  相似文献   

18.
The “atoms in molecules” structures of 225 unsubstituted hydrocarbons are derived from both the optimized and the promolecule electron densities. A comparative analysis demonstrates that the molecular graphs derived from these two types of electron densities at the same geometry are equivalent for almost 90 % of the hydrocarbons containing the same number and types of critical points. For the remaining 10 % of molecules, it is demonstrated that by inducing small perturbations, through the variation of the used basis set or slight changes in the used geometry, the emerging molecular graphs from both densities are also equivalent. Interestingly, the (3, ?1) critical point between two “non‐bonded” hydrogen atoms, which triggered “H?H bonding” controversy is also observed in the promolecule densities of certain hydrocarbons. Evidently, the topology of the electron density is not dictated by chemical bonds or strong interactions and deformations induced by the interactions of atoms in molecules have a quite marginal role, virtually null, in shaping the general traits of the topology of molecular electron densities of the studied hydrocarbons, whereas the key factor is the underlying atomic densities.  相似文献   

19.
This article dwells on the nature of “inverted bonds”, which refer to the σ interaction between two sp hybrids by their smaller lobes, and their presence in [1.1.1]propellane. Firstly, we study H3C−C models of C−C bonds with frozen H-C-C angles reproducing the constraints of various degrees of “inversion”. Secondly, the molecular orbital (MO) properties of [1.1.1]propellane and [1.1.1]bicyclopentane are analyzed with the help of orbital forces as a criterion of bonding/antibonding character and as a basis to evaluate bond energies. Triplet and cationic states of [1.1.1]propellane species are also considered to confirm the bonding/antibonding character of MOs in the parent molecule. These approaches show an essentially non-bonding character of the σ central C−C interaction in propellane. Within the MO theory, this bonding is thus only due to π-type MOs (also called “banana” MOs or “bridge” MOs) and its total energy is evaluated to approximately 50 kcal mol−1. In bicyclopentane, despite a strong σ-type repulsion, a weak bonding (15–20 kcal mol−1) exists between both central C−C bonds, also due to π-type interactions, though no bond is present in the Lewis structure. Overall, the so-called “inverted” bond, as resulting from a σ overlap of the two sp hybrids by their smaller lobes, appears highly questionable.  相似文献   

20.
Currently, bonding analysis of molecules based on the Quantum Theory of Atoms in Molecules (QTAIM) is popular; however, “misinterpretations” of the QTAIM analysis are also very frequent. In this contribution the chemical relevance of the bond path as one of the key topological entities emerging from the QTAIM’s topological analysis of the one‐electron density is reconsidered. The role of nuclear vibrations on the topological analysis is investigated demonstrating that the bond paths are not indicators of chemical bonds. Also, it is argued that the detection of the bond paths is not necessary for the “interaction” to be present between two atoms in a molecule. The conceptual disentanglement of chemical bonds/interactions from the bonds paths, which are alternatively termed “line paths” in this contribution, dismisses many superficial inconsistencies. Such inconsistencies emerge from the presence/absence of the line paths in places of a molecule in which chemical intuition or alternative bonding analysis does not support the presence/absence of a chemical bond. Moreover, computational QTAIM studies have been performed on some “problematic” molecules, which were considered previously by other authors, and the role of nuclear vibrations on presence/absence of the line paths is studied demonstrating that a bonding pattern consistent with other theoretical schemes appears after a careful QTAIM analysis and a new “interpretation” of data is performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号