首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quasilinear solutions of the radial Schrödinger equation for different potentials are compared with corresponding WKB solutions. For this study, the Schrödinger equation is first cast into a nonlinear Riccati form. While the WKB method generates an expansion in powers of , the quasi-linearization method (QLM) approaches the solution of the Riccati equation by approximating its nonlinear terms by a sequence of linear iterates. Although iterative, the QLM is not perturbative and does not rely on the existence of any kind of smallness parameters. If the initial QLM guess is properly chosen, the usual QLM solution, unlike the WKB, displays no unphysical turning-point singularities. The first QLM iteration is given by an analytic expression. This allows one to estimate analytically the role of different parameters, and the influence of their variation on the boundedness or unboundedness of a critically stable quantum system, with much more precision than provided by the WKB approximation, which often fails miserably for systems on the border of stability. It is therefore demonstrated that the QLM method is preferable over the usual WKB method.  相似文献   

2.
We present a divergence-free WKB theory, which is a new semiclassical theory modified by nonperturbative quantum corrections. Conventionally, the WKB theory is constructed upon a trajectory that obeys the bare classical dynamics expressed by a quadratic equation in momentum space. Contrary to this, the divergence-free WKB theory is based on a higher-order algebraic equation in momentum space, which represents a dressed classical dynamics. More precisely, this higher-order algebraic equation is obtained by including quantum corrections to the quadratic equation, which is the bare classical limit. An additional solution of the higher-order algebraic equation enables us to construct a uniformly converging perturbative expansion of the wavefunction. Namely, our theory removes the notorious divergence of wavefunction at a turning point from the WKB theory. Moreover, our theory is able to produce wavefunctions and eigenenergies more accurate than those given by the traditional WKB method. In addition, the divergence-free WKB theory that is based on the cubic equation allows us to construct a uniformly valid wavefunction for the nonlinear Schrödinger equation (NLSE). A recent short letter [T. Hyouguchi, S. Adachi, M. Ueda, Phys. Rev. Lett. 88 (2002) 170404] is the opening of the divergence-free WKB theory. This paper presents full formalism of this theory and its several applications concerning wavefunction and eigenenergy to show that our theory is a natural extension of the traditional WKB theory that incorporates nonperturbative quantum corrections.  相似文献   

3.
The α decay half-lives of recently synthesized superheavy nuclei (SHN) are calculated by applying a new approach which estimates them with the help of their neighbors based on some simple formulas. The estimated half-life values are in very good agreement with the experimental ones, indicating the reliability of the experimental observations and measurements to a large extent as well as the predictive power of our approach. The second part of this work is to test the applicability of the Wentzel-Kramers-Brillouin (WKB) approximation for the quantum mechanical tunneling probability. We calculated the accurate barrier penetrability for alpha decay along with proton and cluster radioactivity by numerically solving Schrödinger equation. The calculated results are compared with those of the WKB method to find that WKB approximation works well for the three physically analogical decay modes.  相似文献   

4.
The paraxial wave equation is a reduced form of the Helmholtz equation. Its solutions can be directly obtained from the solutions of the Helmholtz equation by using the method of complex point source. We applied the same logic to quantum mechanics, because the Schrödinger equation is parabolic in nature as the paraxial wave equation. We defined a differential equation, which is analogous to the Helmholtz equation for quantum mechanics and derived the solutions of the Schrödinger equation by taking into account the solutions of this equation with the method of complex point source. The method is applied to the problem of diffraction of matter waves by a shutter.  相似文献   

5.
An alternative approach issues from the Appelle transformation of the Schrödinger equation. One solves the inverse problem for the transformed equation, a general solution of which is a quadratic form of two independent solutions of the primary Schrödinger equation. If the potential in the Schrödinger equation obeys one equation of the KdV hierarchy, the time derivative of this form is a linear combination of the form and its space derivative. The coefficients in the combination depend on the potential and the energy parameter of the Schrödinger equation only. This relation also determines the time dependence of the spectral data which along with the solution of the inverse problem gives the solution of the KdV equations as usual.  相似文献   

6.
We construct the d-dimensional “half” Schrödinger equation, which is a kind of the root of the Schrödinger equation, from the (d+1)-dimensional free Dirac equation. The solution of the “half” Schrödinger equation also satisfies the usual free Schrödinger equation. We also find that the explicit transformation laws of the Schrödinger and the half Schrödinger fields under the Schrödinger symmetry transformation are derived by starting from the Klein-Gordon equation and the Dirac equation in d+1 dimensions. We derive the 3- and 4-dimensional super-Schrödinger algebra from the superconformal algebra in 4 and 5 dimensions. The algebra is realized by introducing two complex scalar and one (complex) spinor fields and the explicit transformation properties have been found.  相似文献   

7.
There are a lot of difficulties and troubles in quantum mechanics, when the linear Schrödinger equation is used to describe microscopic particles. Thus, we here replace it by a nonlinear Schrödinger equation to investigate the properties and rule of microscopic particles. In such a case we find that the motion of microscopic particle satisfies classical rule and obeys the Hamiltonian principle, Lagrangian and Hamilton equations. We verify further the correctness of these conclusions by the results of nonlinear Schrödinger equation under actions of different externally applied potential. From these studies, we see clearly that rules and features of motion of microscopic particle described by nonlinear Schrödinger equation are greatly different from those in the linear Schrödinger equation, they have many classical properties, which are consistent with concept of corpuscles. Thus, we should use the nonlinear Schrödinger equation to describe microscopic particles.  相似文献   

8.
We study an integrable modification of the focusing nonlinear Schrödinger equation from the point of view of semiclassical asymptotics. In particular, (i) we establish several important consequences of the mixed-type limiting quasilinear system including the existence of maps that embed the limiting forms of both the focusing and defocusing nonlinear Schrödinger equations into the framework of a single limiting system for the modified equation, (ii) we obtain bounds for the location of the discrete spectrum for the associated spectral problem that are particularly suited to the semiclassical limit and that generalize known results for the spectrum of the nonselfadjoint Zakharov-Shabat spectral problem, and (iii) we present a multiparameter family of initial data for which we solve the associated spectral problem in terms of special functions for all values of the semiclassical scaling parameter. We view our results as part of a broader project to analyze the semiclassical limit of the modified nonlinear Schrödinger equation via the noncommutative steepest descent procedure of Deift and Zhou, and we also present a selfcontained development of a Riemann-Hilbert problem of inverse scattering that differs from those given in the literature and that is well adapted to semiclassical asymptotics.  相似文献   

9.
We find exact solutions of the two- and three-dimensional nonlinear Schrödinger equation with a supporting potential. We focus in the case where the diffraction operator is of the hyperbolic type and both the potential and the solution have the form of an X-wave. Following similar arguments, several additional families of exact solutions can also can be found irrespectively of the type of the diffraction operator (hyperbolic or elliptic) or the dimensionality of the problem. In particular we present two such examples: The one-dimensional nonlinear Schrödinger equation with a stationary and a “breathing” potential and the two-dimensional nonlinear Schrödinger with a Bessel potential.  相似文献   

10.
We introduce a method for constructing exactly-solvable Schrödinger equations with energy-dependent potentials. Our method is based on converting a general linear differential equation of second order into a Schrödinger equation with energy-dependent potential. Particular examples presented here include harmonic oscillator, Coulomb and Morse potentials with various types of energy dependence.  相似文献   

11.
It is shown that the time-dependent WKB expansion highlights some of the hidden properties of the Schrödinger equation and forms a natural bridge between that equation and the functional integral formulation of quantum mechanics. In particular it is shown that the leading (zero- and first-order in ) terms in the WKB expansion are essentially classical, and the relationship of this result to the classical nature of the WKB partition function, and of the anomalies in quantum field theory, is discussed.  相似文献   

12.
This paper presents the coupled version of a previous work on nonlinear Schrödinger equation [23]. It focuses on the construction of approximate solutions of nonlinear Schrödinger equations. In this paper, we applied the differential transformation method (DTM) to solving coupled Schrödinger equations. The obtained results show that the technique suggested here is accurate and easy to apply.  相似文献   

13.
We provide an explicit blow up solution of Schrödinger equation derived from Schrödinger map. Consequently we show the non-equivalence between the Schrödinger equation and Landau-Lifshitz equation. We also find that two class of equivariant solutions of Landau-Lifshitz equation are static.  相似文献   

14.
We show that techniques suitable for studying the bound state problem for the linear Schrödinger equation are also applicable to certain nonlinear generalizations. A sufficient condition for the absence of bound states and a family of lower bounds on the eigenvalues are derived.  相似文献   

15.
We construct a new type of first-order Darboux transformations for the stationary Schrödinger equation. In contrast to the conventional case, our Darboux transformations support arbitrary (foreign) auxiliary equations. We show that among other applications, our formalism can be used to systematically construct Darboux transformations for Schrödinger equations with energy-dependent potentials, including a recent result (Lin et al., 2007) [16] as a special case.  相似文献   

16.
Methods of generating exactly integrable potentials for the Schrödinger equation are consolidated within the framework of a simple construction. The Abraham-Moses method is generalized to the case of the nonstationary Schrödinger equation. An algorithm is proposed for solving the Schrödinger equation based on nonlocal symmetry operators.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 19–25, September, 1991.  相似文献   

17.
The one-dimensional Schrödinger equation is reduced to a system of algebraic equations on the basis of the complex WKB method. As a result, recursion relations are obtained for the numerical calculation of high-order corrections to the vibration-rotation spectra of diatomic molecules. Various nonpolynomial representations of the potential are investigated.V. V. Kuibyshev State University, Tomsk. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 9–16, June, 1994.  相似文献   

18.
We present a method by which one-dimensional nonlinear soliton and kink Schrödinger equations can be solved in closed form. The hermitean nonlinear soliton operator may contain up to second derivatives of the wave function and the vanishing condition must hold. The method is applied to solve known nonlinear Schrödinger equations for one-soliton and one-kink solutions and, by inverting the procedure, to derive new operators with wave packet solutions of algebraic and arbitrary shapes. One of them is equivalent to the Derivative Nonlinear Schrödinger equation.  相似文献   

19.
We consider the problem of the existence of a dynamical barrier of “mass” that needs to be excited on a lattice site to lead to the formation and subsequent persistence of localized modes for a nonlinear Schrödinger lattice. We contrast the existence of a dynamical barrier with its absence in the static theory of localized modes in one spatial dimension. We suggest an energetic criterion that provides a sufficient, but not necessary, condition on the amplitude of a single-site initial condition required to form a solitary wave. We show that this effect is not one-dimensional by considering its two-dimensional analog. The existence of a sufficient condition for the excitation of localized modes in the non-integrable, discrete, nonlinear Schrödinger equation is compared to the dynamics of excitations in the integrable, both discrete and continuum, version of the nonlinear Schrödinger equation.  相似文献   

20.
It is shown that the new approach which has been successfully developed by Froman and Froman [1] during recent years for the study of the properties of quasiclassical solutions of the one-dimensional Schrödinger equation expressed in the form of uniformly converging series can also be extended to the generalized WKB method of Petrashen'-Fock.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 58–65, September, 1972.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号