首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
α from natural radioactivity may interact with a nucleus and emit a neutron. The reaction introduces the background to the liquid scintillator (LS) based neutrino experiments. In the LS detector,α comes from 23Su, 232Th, and 210Po decay chains. For Gadolinium-doped LS (Gd-LS) detector, α also comes from 227Ac. The nucleus 13C is a natural component of Carbon which is rich in the LS. The background rate and spectrum should be subtracted carefully from the neutrino candidates. This paper describes the calculation of neutron yield and spectrum with uncertainty estimated. The results are relevant for many existing neutrino experiments and future LS or Gd-LS based experiments.  相似文献   

2.
The α decay half-life of the unknown nucleus ~(297)Og is predicted within the two-potential approach, andα preformation probabilities of 64 odd-A nuclei in the region of proton numbers 82 Z 126 and neutron numbers 152 N 184, from ~(251)Cf to ~(295)Og, are extracted. In addition, based on the latest experimental data, a new set of parameters for α preformation probabilities considering the shell effect and proton-neutron interaction are obtained.The predicted α decay half-life of ~(297)Og is 0.16 ms within a factor of 4.97. The predicted spin and parity of the ground states for ~(269)Sg,~(285)Fl and ~(293)Lv are 3/2~+, 3/2~+ and 5/2~+, respectively.  相似文献   

3.
The prompt γ-ray spectrum from depleted uranium(DU) spherical shells induced by 14 Me V D-T neutrons is measured. Monte Carlo(MC) simulation gives the largest prompt γ flux with the optimal thickness of the DU spherical shells 3–5 cm and the optimal frequency of neutron pulse 1 MHz. The method of time of flight and pulse shape coincidence with energy(DC-TOF) is proposed, and the subtraction of the background γ-rays discussed in detail. The electron recoil spectrum and time spectrum of the prompt γ-rays are obtained based on a 2 ×2 BC501 A liquid scintillator detector. The energy spectrum and time spectrum of prompt γ-rays are obtained based on an iterative unfolding method that can remove the influence of γ-rays response matrix and pulsed neutron shape.The measured time spectrum and the calculated results are roughly consistent with each other. Experimental promptγ-ray spectrum in the 0.4–3 Me V energy region agrees well with MC simulation based on the ENDF/BVI.5 library,and the discrepancies for the integral quantities of γ-rays of energy 0.4–1 Me V and 1–3 Me V are 9.2% and 1.1%,respectively.  相似文献   

4.
The neutron response function for a BC501A liquid scintillator (LS) has been measured using a series of monoenergetic neutrons produced by the p-T reaction. The proton energies were chosen such as to produce neutrons in the energy range of 1 to 20 MeV. The principles of the technique of unfolding a neutron energy spectrum by using the measured neutron response function and the measured Pulse Height (PH) spectrum is briefly described. The PH spectrum of neutrons from the Pu-C source, which will be used for the calibration of the reactor antineutrino detectors for the Daya Bay neutrino experiment, was measured and analyzed to get the neutron energy spectrum. Simultaneously the neutron energy spectrum of an Am-Be source was measured and compared with other measurements as a check of the result for the Pu-C source. Finally, an error analysis and a discussion of the results are given.  相似文献   

5.
The current-mode-counting method is a new approach to observing transient processes,especially in transient nuclear fusion,based on the non-homogeneous Poisson process(NHPP)model.In this paper,a new measurement process model of the pulsed radiation field produced by transient nuclear fusion is built based on the NHPP.A simulated measurement is performed using the model,and the current signal from the detector is obtained by simulation based on Poisson process thinning.The neutron time spectrum is reconstructed and is in good agreement with the theoretical value,with its maximum error of a characteristic parameter less than 2.3%.Verification experiments were carried out on a CPNG-6 device at the China Institute of Atomic Energy,with a detection system with a nanosecond response time.The experimental charge amplitude spectra are in good agreement with those obtained by the traditional counting mode,and the characteristic parameters of the time spectrum are in good agreement with the theoretical values.This shows that the current-mode-counting method is effective for the observation of transient nuclear fusion processes.  相似文献   

6.
7.
Neutron background measurement is always very important for dark matter detection due to almost the same effect for the recoiled nucleus scattered off by the incident neutron and dark matter particle. For deep under-ground experiments, the flux of neutron background is so low that large-scale detection is usually necessary. In this paper, by using Geant4, the relationship between detection efficiency and volume is investigated, meanwhile, two geometrical schemes for this detection including a single large-sized detector and arrayed multi-detector are compared under the condition of the same volume. The geometrical parameters of detectors are filtrated and detection efficiencies obtained under the similar background condition of China Jingping Underground Laboratory (CJPL). The results show that for a large-scale Gd-doped liquid scintillation detector, the detection efficiency increases with the size of detector at the beginning and then trends toward a constant. Under the condition of the same length and cross section, the arrayed multi-detector has almost similar detection performance as the single large-sized detector, while too much detector number could cause degeneration of detection performance. Considering engineering factors, such as testing, assembling and production, the 4 × 4 arrayed detector scheme is flexible and more suitable. Furthermore, the conditions for using fast and slow signal coincidence detection and the detectable lower limit of neutron energy are evaluated by simulating the light process.  相似文献   

8.
The present work is a continuation of our previous paper [J.-G. Deng, et al., Chin. Phys. C, 41:124109(2017)]. In the present work, the α decay half-life of the unknown nucleus296 Og is predicted within the two-potential approach and the hindrance factors of all 20 even-even nuclei in the same region as296 Og, i.e. proton number 82Z 126 and neutron number 152N 184, from250 Cm to294 Og, are extracted. The prediction is 1.09 ms within a factor of 5.12. In addition, based on the latest experimental data, a new set of parameters of α decay hindrance factors for the even-even nuclei in this region, considering the shell effect and proton-neutron interaction,are obtained.  相似文献   

9.
In the past few decades,numerous searches have been made for the neutrinoless double-beta decay(0νββ) process,aiming to establish whether neutrinos are their own antiparticles(Majorana neutrinos),but no 0νββdecay signal has yet been observed.A number of new experiments are proposed but they ultimately suffer from a common problem: the sensitivity may not increase indefinitely with the target mass.We have performed a detailed analysis of the physics potential by using the Jiangmen Underground Neutrino Observatory(JUNO) to improve the sensitivity to 0νββ up to a few me V,a major step forward with respect to the experiments currently being planned.JUNO is a 20 kton low-background liquid scintillator(LS) detector with 3%/(E(MeV))1/2 energy resolution,now under construction.It is feasible to build a balloon filled with enriched xenon gas(with~(136)Xe up to 80%) dissolved in LS,inserted into the central region of the JUNO LS.The energy resolution is ~1.9% at the Q-value of ~(136)Xe 0νββ decay.Ultra-low background is the key for 0νββ decay searches.Detailed studies of background rates from intrinsic 2νββ and 8~B solar neutrinos,natural radioactivity,and cosmogenic radionuclides(including light isotopes and ~(137)Xe) were performed and several muon veto schemes were developed.We find that JUNO has the potential to reach a sensitivity(at 90% C.L.) to T_(1/2)~(0νββ)of 1.8×10~(28)yr(5.6×10~(27)yr) with ~50 tons(5 tons) of fiducial136 Xe and 5 years exposure,while in the 50-ton case the corresponding sensitivity to the effective neutrino mass,mββ,could reach(5–12) meV,covering completely the allowed region of inverted neutrino mass ordering.  相似文献   

10.
The technique details for measuring radiation dose are expounded. The results of gamma and neutron radiation levels are presented and the corresponding radiation shielding is discussed based on the simplified estimation. In addition, the photon radiation level move as background for future experiments is measured by a NaI(T1) detector.  相似文献   

11.
A compact neutron spectrometer based on the liquid scintillator is presented for neutron energy spectrum measurements at the HL-2A Tokamak. The spectrometer was well characterized and a fast digital pulse shape discrimination software was developed using the charge comparison method. A digitizer data acquisition system with a maximum frequency of 1 MHz can work under an environment with a high count rate at HL-2A Tokamak. Specific radiation and magnetic shielding for the spectrometer were designed for the neutron spectrum measurement at the HL-2A Tokamak. For pulse height spectrum analysis, dedicated numerical simulation utilizing NUBEAM combined with GENESIS was performed to obtain the neutron energy spectrum. Subsequently, the transportation process from the plasma to the detector was evaluated with Monte Carlo calculations. The distorted neutron energy spectrum was folded with the response matrix of the liquid scintillation spectrometer, and good consistency was found between the simulated and measured pulse height spectra. This neutron spectrometer based on a digital acquisition system could be well adopted for the investigation of the auxiliary heating behavior and the fast-ion related phenomenon on different tokamak devices.  相似文献   

12.
王喆  陈少敏 《中国物理C(英文版)》2020,44(3):033001-033001-10
The research on geoneutrinos is a new interdisciplinary subject involving particle experiments and geo-science.Potassium-40(40K)decays contribute roughly to 1/3 of the radiogenic heat of the Earth,which is not yet accounted for by experimental observation.Solar neutrino experiments with liquid scintillators have observed uranium and thorium geoneutrinos and are the most promising experiments with regard to low-background neutrino detection.In this study,we present the new concept of using liquid-scintillator Cherenkov detectors to detect the neutrino-electron elastic scattering process of 40K geoneutrinos.Liquid-scintillator Cherenkov detectors using a slow liquid scintillator achieve this goal with both energy and direction measurements for charged particles.Given the directionality,we can significantly suppress the dominant intrinsic background originating from solar neutrinos in conventional liquid-scintillator detectors.We simulated the solar-and geo-neutrino scatterings in the slow liquid scintillator detector,and implemented energy and directional reconstructions for the recoiling electrons.We found that 40K geoneutrinos can be detected with three-standard-deviation accuracy in a kiloton-scale detector.  相似文献   

13.
Understanding the radiation background at the north crossing point (NCP) in the tunnel of BEPCII is crucial for the performance safety of the High Purity Germanium (HPGe) detector, and in turn of great significance for long-term stable running of the energy measurement system. Therefore, as the first step, a NaI(Tl) detector is constructed to continuously measure the radiation level of photons as background for future experiments. Furthermore, gamma and neutron dosimeters are utilized to explore the radiation distribution in the vicinity of the NCP where the HPGe detector will be located. Synthesizing all obtained information, the shielding for neutron irradiation is studied based on model-dependent theoretical analysis.  相似文献   

14.
A high-efficiency fast neutron detector prototype based on a triple Gas Electron Multiplier(GEM) detector, which, coupled with a novel multi-layered high-density polyethylene(HDPE) as a neutron-to-proton converter for improving the neutron detection efficiency, is introduced and tested with the Am-Be neutron source in the Institute of Modern Physics(IMP) at Lanzhou in the present work. First, the developed triple GEM detector is tested by measuring its effective gain and energy resolution with55 Fe X-ray source to ensure that it has a good performance.The effective gain and obtained energy resolution is 5.0×104and around 19.2%, respectively. Secondly, the novel multi-layered HDPE converter is coupled with the cathode of the triple GEM detector making it a high-efficiency fast neutron detector. Its effective neutron response is four times higher than that of the traditional single-layered conversion technique when the converter layer number is 38.  相似文献   

15.
Measurements of the keV-neutron capture cross sections and radiative γ-ray spectrum of 56Fe and 57Fe are performed based on a 7 Li(p,n)7 Be reaction neutron source. The incident neutron spectrum on a capture sample is measured by means of a time-of-flight (TOF) method with a 6Li-glass detector. The radiative capture 7-rays emitted from an iron CS Fe or 57 Fe) or standard gold (197Au) sample are detected by a large anti-Compton NaI(TI) spectrometer covered with a heavy shield. The capture yields of samples are obtained by applying a pulse-height weighting technique to the corresponding capture γ-ray pulse-height spectrum. The Maxwellian averaged neutron capture cross sections of 56Fe and 5T Fe are derived according to the present capture cross section results.  相似文献   

16.
Reactor neutrino oscillation experiments, such as Daya Bay, Double Chooz and RENO are designed to determine the neutrino mixing angle θ13 with a sensitivity of 0.01--0.03 in sin^2 2θ13 at 90% confidence level, an improvement over the current limit by more than one order of magnitude. The control of systematic uncertainties is critical to achieving the sin^22θ13 sensitivity goal of these experiments. Antineutrinos emitted from spent nuclear fuel (SNF) would distort the soft part of energy spectrum and may introduce a non-negligible systematic uncertainty. In this article, a detailed calculation of SNF neutrinos is performed taking account of the operation" of a typical reactor and the event rate in the detector is obtained. A further estimation shows that the event rate contribution of SNF neutrinos is less than 0.2% relative to the reactor neutrino signals. A global X2 analysis shows that this uncertainty will degrade the θ13 sensitivity at a negligible level.  相似文献   

17.
A gamma spectrum of a Pu-C source is measured using a p-type HPGe detector, whose three peaks (full energy, single-escape and double-escape peak) can be used as a calibration source for the beam energy measurement system of BEPCII. The effect of fast neutron damage on the energy resolution of the HPGe detector is studied, which indicates that the energy resolution begins to deteriorate when the detector is subject to 2×107 n/cm2 fastneutrons. The neutron damage mechanism and detector repair methods are reviewed. The Monte Carlo simulation technique is utilized to study the shielding of the HPGe detector from the fast neutron radiation damage, which is of great significance for the future commissioning of the beam energy measurement system.  相似文献   

18.
To overcome the problem of inefficient computing time and unreliable results in MCNP5 calculation, a two-step method is adopted to calculate the energy deposition of prompt γ-rays in detectors for depleted uranium spherical shells under D-T neutron irradiation. In the first step, the γ-ray spectrum for energy below 7 MeV is calculated by MCNP5 code; secondly, the electron recoil spectrum in a BC501 A liquid scintillator detector is simulated based on EGSnrc Monte Carlo Code with the γ-ray spectrum from the first step as input. The comparison of calculated results with experimental ones shows that the simulations agree well with experiment in the energy region 0.4–3 MeV for the prompt γ-ray spectrum and below 4 MeVee for the electron recoil spectrum. The reliability of the two-step method in this work is validated.  相似文献   

19.
In this work,a new neutron and γ(n/γ) discrimination method based on an Elman Neural Network(ENN) is proposed to improve the discrimination performance of liquid scintillator(LS) detectors.Neutron andγ data were acquired from an EJ-335 LS detector,which was exposed in a ~(241)Am-~9Be radiation field.Neutron and γ events were discriminated using two methods of artificial neural network including the ENN and a typical Back Propagation Neural Network(BPNN) as a control.The results show that the two methods have different n/γdiscrimination performances.Compared to the BPNN,the ENN provides an improved of Figure of Merit(FOM)in n/γ discrimination.The FOM increases from 0.907 ± 0.034 to 0.953 ± 0.037 by using the new method of the ENN.The proposed n/γ discrimination method based on ENN provides a new choice of pulse shape discrimination in neutron detection.  相似文献   

20.
A position-sensitive detector is designed for neutron detection. It uses a single continuous screen of a self-made lithium glass scintillator, rather than discrete crystal implementations, coupling with a multi-anode PMT (MaPMT). The scintillator is fast and efficient; with a decay time of 34 ns and thermal neutron detection efficiency of around 95.8% for the 3 mm thick screen, and its light yield is around 5670 photons per neutron and 3768 photons per MeV γ rays deposition. The spatial resolution is around 1.6 mm (FWHM) with the energy resolution around 34.7% by using α (5.2 MeV) rays test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号