首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, we review two recent theoretical models in the field of ionic surfactant micelles and discuss the comparison of their predictions with experimental data. The first approach is based on the analysis of the stepwise thinning (stratification) of liquid films formed from micellar solutions. From the experimental step-wise dependence of the film thickness on time, it is possible to determine the micelle aggregation number and charge. The second approach is based on a complete system of equations (a generalized phase separation model), which describes the chemical and mechanical equilibrium of ionic micelles, including the effects of electrostatic and non-electrostatic interactions, and counterion binding. The parameters of this model can be determined by fitting a given set of experimental data, for example, the dependence of the critical micellization concentration on the salt concentration. The model is generalized to mixed solutions of ionic and nonionic surfactants. It quantitatively describes the dependencies of the critical micellization concentration on the composition of the surfactant mixture and on the electrolyte concentration, and predicts the concentrations of the monomers that are in equilibrium with the micelles, as well as the solution’s electrolytic conductivity; the micelle composition, aggregation number, ionization degree and surface electric potential. These predictions are in very good agreement with experimental data, including data from stratifying films. The model can find applications for the analysis and quantitative interpretation of the properties of various micellar solutions of ionic surfactants and mixed solutions of ionic and nonionic surfactants.  相似文献   

2.
Analytical expressions for the direct and reverse fluxes of molecular aggregates over the first and second potential barriers of the aggregation work in the presence of spherical and cylindrical micelles in non-ionic surfactant solution were derived. Expressions for the sum (entering into kinetic equations of micellization) of direct and reverse fluxes of molecular aggregates over the first and second potential barriers of the aggregation work in the vicinity of the final equilibrium state of materially isolated surfactant solution were linearized. In the experimentally important range of the values of overall surfactant concentration in solution where the predominant contribution to the total surfactant amount is introduced by cylindrical micelles, we derived a closed system of two linearized relaxation equations determining the buildup (with time) of experimentally observed total concentrations of spherical and cylindrical micelles in the vicinity of the final equilibrium state of materially isolated surfactant solution. The case of the solutions of such surfactants, for which the spherical shape of a micelle appeared to be unrealizable due to the structure and packing conditions of molecules, was considered separately.Translated from Kolloidnyi Zhurnal, Vol. 67, No. 1, 2005, pp. 38–46. Original Russian Text Copyright © 2005 by Kuni, Shchekin, Rusanov, Grinin.  相似文献   

3.
Based on the general kinetic equation that describes the aggregation and fragmentation of surfactant molecular aggregates, a closed set of nonlinear equations is derived for the slow relaxation of surfactant monomer concentration and the total concentrations of coexisting spherical and cylindrical micelles to the equilibrium state of a micellar solution. Both the transitions accompanied by the emission and capture of surfactant monomers by micelles and the transitions resulting from the fussion and fission of micelles, are taken into account. The derived set of equations describes all stages of the slow relaxation from the initial perturbance to the final equilibrium state of a micellar solution.  相似文献   

4.
The transition from spherical to globular and cylindrical equilibrium modifications of micelles in solutions of nonionic surfactants is numerically studied within the framework of the droplet model of molecular aggregates. Two branches of the curve of micelle aggregation work are plotted as a function of aggregation numbers. One of these curves corresponds to the globular micelles; the other, to spherocylindrical micelles. At aggregation numbers corresponding to the limiting spherical packing, both the globules and spherocylinders are transformed into the limiting sphere. It is shown that the ratio between the branches depends on the dimensionless parameter characterizing the ratio of electrostatic and surface contributions to the aggregation work. It is elucidated that, at certain values of this parameter and surfactant monomer concentration in solution, in addition to the maximum in the region of submicellar aggregates for spherical micelles, the second maximum arises on the curve of aggregation work as a function of aggregation numbers in the region of transition to spherocylindrical micelles. The appearance of an additional maximum is shown to be caused by the sum of surface, electrostatic, and concentration contributions to the aggregation work and is not directly related to the conformational contribution to the aggregation work.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 3, 2005, pp. 363–376.Original Russian Text Copyright © 2005 by Kshevetskiy, Shchekin.  相似文献   

5.
Kinetics of adsorption from micellar solutions   总被引:2,自引:0,他引:2  
Previous studies on surfactant adsorption mostly deal with dilute systems without aggregation in the bulk phase. At the same time, micellar solutions can be more important from the point of view of applications. If one attempts to estimate the equilibrium adsorption, neglecting the influence of micelles can lead to reasonable results. The situation differs for non-equilibrium systems when the adsorption rate can increase by an order of magnitude at the increase of the surfactant concentration beyond the CMC. A critical survey of various models describing the influence of micelles on adsorption kinetics at the liquid-gas interface is given and the theoretical results are compared with existing experimental data. The theories proposed for the case of large deviations from the equilibrium are usually based on some unjustifiable assumptions and can describe the kinetic dependencies of adsorption in only a limited number of situations. Consequently, only rough estimates of the kinetic coefficients of micellization can be obtained from experimental data on dynamic surface tension. More rigorous equations can be derived if the system only deviates slightly from equilibrium. In the latter case, the agreement between theoretical and experimental results is essentially better and measurements of the dynamic surface elasticity of micellar solutions allow us to study the micellization kinetics.  相似文献   

6.
Based on thermodynamically substantiated linear dependence of the work of cylindrical micelle formation on the aggregation number within a wide range of aggregation numbers where the cylindrical micelles are accumulated in a surfactant solution, the second critical micellization concentration (CMC) is introduced as an overall surfactant concentration at which the ratio of the total amount of substance in cylindrical micelles to the amount of substance in monomers is equal to 0.1, i.e., it is already noticeable. It is shown that this ratio increases rather rapidly with a monomer concentration. The coefficient of the linear dependence of the work of cylindrical micelle formation on the aggregation number in the important practical situation where the ratios of the total concentration of cylindrical micelles and total amount of substance in these micelles to the monomer concentration are equal by the order of magnitude to 1 and 105, respectively, while disc micelles and extended bilayers are still not appeared. In the same situation, the ratios of the total concentration of spherical micelles and total amount of substance in these micelles to the monomer concentration are equal by the order of magnitude to 1 and 102, respectively. The relationship between the overall surfactant concentration and monomer concentration is found. It is shown that the second CMC exceeds by two orders of magnitude the first CMC corresponding to the onset of the noticeable accumulation of surfactant in spherical micelles. The distribution of cylindrical micelles over the aggregation numbers is analyzed. It is demonstrated that, in agreement with the experiment, the distribution is almost uniform in the considerable part of the wide range of aggregation numbers and drops exponentially in the remaining (right-hand) part of this range. Experimental result is confirmed that the total concentration of cylindrical micelles, the mean value, and the mean statistical scatter of aggregation numbers in a cylindrical micelle is proportional to the square root of the overall surfactant concentration. The balance equation of surfactant amount in the vicinity of the final equilibrium state of a materially isolated solution is linearized. This linearization makes it possible to express the deviations of monomer and aggregate concentrations from their equilibrium values at the lower boundary of the region of the linear dependence of the work of cylindrical micelle formation on the aggregation numbers via the deviations of experimentally observed total concentrations of spherical and cylindrical micelles from their equilibrium values. The case of the solutions of such surfactants, for which spherical shape appeared to be unrealizable due to their molecular structure and packing conditions, is considered separately.  相似文献   

7.
Equilibrium and nonequilibrium distributions of molecular aggregates in a solution of a nonionic surfactant are investigated at the total surfactant concentration above the second critical micelle concentration (CMC2). The investigation is not limited by the choice of a specific micellar model. Expressions for the direct and reverse fluxes of molecular aggregates over the potential humps of the aggregation work are derived. These aggregation work humps set up activation barriers for the formation of spherical and cylindrical micelles. With the aid of the expressions for molecular aggregate fluxes, a set of two kinetic equations of micellization is derived. This set, along with the material balance equation, describes the molecular mechanism of the slow relaxation of micellar solution above the CMC2. A realistic situation has been analyzed when the CMC2 exceeds the first critical micelle concentration, CMC1, by an order of magnitude, and the total surfactant concentration varies within the range lying markedly above the CMC2 but not by more than 2 orders of magnitude. For such conditions, an equation relating the parameters of the aggregation work of a cylindrical micelle to the observable ratio of the total surfactant concentration and the monomer concentration is found for an equilibrium solution. For the same conditions, but in the nonequilibrium state of materially isolated surfactant solution, a closed set of linearized relaxation equations for total concentrations of spherical and cylindrical micelles is derived. These equations determine the time development of two modes of slow relaxation in micellar solutions markedly above the CMC2. Solving the set of equations yields two rates and two times of slow relaxation.  相似文献   

8.
9.
10.
The current state of the knowledge of the size and the aggregation numbers of micelles formed in solutions of bile salts was evaluated. The experimental techniques considered include static light scattering, sedimentation equilibrium, membrane osmometry, sedimentation velocity and translational diffusion. The theoretical background of each method is briefly discussed, the working equations are summarized and the limitations of each technique are enumerated. Various interaction parameters and their effects on the measured micellar size are discussed. A brief survey of the recent experimental results from the author's laboratory is presented.  相似文献   

11.
Theoretical results published in the last 17 years on the kinetics of aggregation and relaxation in micellar surfactant solutions have been reviewed. The results obtained by the analytical and direct numerical solution of the Becker–Döring kinetic equations and the Smoluchowski generalized equations, which describe different possible mechanisms of aggregation and relaxation on all time scales from ultrafast relaxation while reaching the quasi-equilibrium in the region of subcritical molecular aggregates to the last stage of slow relaxation of micelles to the final aggregated state, have been considered in detail. The droplet model and the model linear with respect to aggregation numbers have been used for the work of aggregation to describe the dynamics of the rearrangement of micellar systems consisting of only spherical, only cylindrical, and coexisting spherical and cylindrical aggregates, with the dynamics being both linear and nonlinear with respect to deviations from equilibrium. The results of molecular simulation of the rearrangement kinetics of micellar systems subjected to initial disturbance have been reviewed.  相似文献   

12.
On the basis of a detailed physicochemical model, a complete system of equations is formulated that describes the equilibrium between micelles and monomers in solutions of ionic surfactants and their mixtures with nonionic surfactants. The equations of the system express mass balances, chemical and mechanical equilibria. Each nonionic surfactant is characterized by a single thermodynamic parameter — its micellization constant. Each ionic surfactant is characterized by three parameters, including the Stern constant that quantifies the counterion binding. In the case of mixed micelles, each pair of surfactants is characterized with an interaction parameter, β, in terms of the regular solution theory. The comparison of the model with experimental data for surfactant binary mixtures shows that β is constant — independent of the micelle composition and electrolyte concentration. The solution of the system of equations gives the concentrations of all monomeric species, the micelle composition, ionization degree, surface potential and mean area per head group. Upon additional assumptions for the micelle shape, the mean aggregation number can be also estimated. The model gives quantitative theoretical interpretation of the dependence of the critical micellization concentration (CMC) of ionic surfactants on the ionic strength; of the CMC of mixed surfactant solutions, and of the electrolytic conductivity of micellar solutions. It turns out, that in the absence of added salt the conductivity is completely dominated by the contribution of the small ions: monomers and counterions. The theoretical predictions are in good agreement with experimental data.  相似文献   

13.
14.
The aggregation behavior of two bile acid salts (i.e., sodium cholate and sodium deoxycholate) has been studied in their aqueous solutions of three different concentrations (i.e., 30, 90,and 300 mM) by means of molecular dynamics computer simulations. To let the systems reach thermodynamic equilibrium, rather long simulations have been performed: the equilibration period, lasting for 20-50 ns, has been followed by a 20 ns long production phase, during which the average size of the bile aggregates (regarded to be the slowest varying observable) has already fluctuated around a constant value. The production phase of the runs has been about an order of magnitude longer than the average lifetime of both the monomeric bile ions and the bonds that link two neighboring bile ions together to be part of the same aggregate. This has allowed the bile ions belonging to various aggregates to be in a dynamic equilibrium with the isolated monomers. The observed aggregation behavior of the studied bile ions has been found to be in good qualitative agreement with experimental findings. The analysis of the results has revealed that, due to their molecular structure, which is markedly different from that of the ordinary aliphatic surfactants, the bile ions form rather different aggregates than the usual spherical micelles. In the lowest concentration solution studied, the bile ions only form small oligomers. In the case of deoxycholate, these oligomers, such as the ordinary micelles, are kept together by hydrophobic interactions, whereas in the sodium cholate system, small hydrogen-bonded aggregates (mostly dimers) are also present. In the highest concentration systems, the bile ions form large secondary micelles, which are kept together both by hydrophobic interactions and by hydrogen bonds. Namely, in these secondary micelles, small hydrophobic primary micelles are linked together via the formation of hydrogen bonds between their hydrophilic outer surfaces.  相似文献   

15.
Micellization in dilute solutions of diblock copolymers with a polyelectrolyte and a hydrophilic nonionic blocks and oppositely charged polyions is studied using mean-field theory. In aqueous solutions the micelle core consists of the polyelectrolyte complex (PEC) while the corona is formed by hydrophilic blocks of the block copolymers. Describing PEC as a globule in the framework of the Lifshitz [Zh. Eksp. Teor. Fiz. 55, 2408 (1968)] globule theory we calculate the surface tension of the micellar core/solvent interface as a function of the polyion degree of ionization, solvent quality, and concentration of low-molecular-mass salt. The equilibrium aggregation number of starlike micelles formed by block copolymers and homopolymers of opposite charge at stoichiometric mixture compositions is found as a function of the system parameters. It is shown that micelles disintegrate upon addition of salt.  相似文献   

16.
NMR spectroscopy is employed to study the aggregation of a cationic surfactant, 4-aza-1-cetyl-1-azoniabicyclo[2.2.2]octane bromide, in aqueous solutions. Self-diffusion coefficients are determined for micelles and monomers and the hydrodynamic radius and aggregation number are calculated for micelles. Polarization microscopy data demonstrate that the examined compound is an amphotropic substance. It is found that the lyotropic liquid-crystalline system is characterized by a wider temperature range of mesophase existence as compared to the thermotropic system.  相似文献   

17.
18.
Micelle size and shape of dodecyldimethylammonium bromide have been determined by measurement of light scattering from its aqueous NaBr solutions. In water and in the presence of NaBr up to 0.07 M, the Debye plots give straight lines with positive slopes, and spherical micelles having molecular weight less than 30 000 are formed. At higher NaBr concentrations, the Debye plots decrease with increasing micelle concentration, indicating the aggregation of the primary spherical micelles into larger secondary micelles. The molecular weight and the radius of gyration of the secondary micelles increase with increasing NaBr concentration, and the relation between molecular weight and radius of gyration suggests that they are rodlike and flexible. Linear logarithmic relations between micelle molecular weight and ionic strength hold for spherical and rodlike micelles, respectively, and the threshold concentration of NaBr for the sphere-rod transition is located at 0.07 M. The spherical micelle of dodecyldimethylammonium ions has a size more than 20 surfactant ions larger in NaBr solutions than in NaCl solutions, and their rodlike micelle has a shorter length in NaBr solutions than in NaCl solutions, when compared at an identical aggregation number, indicating 2 more surfactant ions in its cross-section.  相似文献   

19.
General (independent of models selected for surfactant molecular aggregates) analytical relations are derived to describe the initial stage of slow relaxation in micellar solutions with spherical micelles. This stage precedes the final stage of the relaxation occurring via an exponential decay of disturbances with time. The relations obtained are applicable throughout the interval of micellar solution concentrations from the first to the second critical micellization concentration. It is shown that the initial stage is characterized by power laws of variations in the concentrations of monomers and micelles with time, these laws being different for the relaxation processes proceeding from above and below toward equilibrium values of micellar solution parameters. Relations are derived for the duration of this stage, and the effect of initial conditions is studied. Characteristic times of the power-law stage are determined and compared with the characteristic time of the final exponent-law relaxation stage. The behavior of these times is investigated at surfactant solution concentrations in the vicinity of, and noticeably above, the first critical micellization concentration. On the basis of the droplet and quasi-droplet thermodynamic models of surfactant molecular aggregates, numerical solutions are found for nonlinearized equations of slow relaxation for the time dependence of surfactant monomer concentrations at all stages of the slow relaxation. Numerical results obtained from the models are compared with the results of a general analytical study.  相似文献   

20.
The authors propose a mean-field model to explore the equilibrium coupling between micelle aggregation and lattice choice in neutral copolymer and selective solvent mixtures. They find both thermotropic and lyotropic transitions from face-centered cubic to body-centered cubic ordered phases of spherical micelles, in agreement with experimental observations of these systems over a broad range of conditions. The stability of the nonclosed packed phase can be attributed to two physical mechanisms: the large entropy of lattice phonons near crystal melting and the preference of the intermicelle repulsions for the body-centered cubic structure when the lattice becomes sufficiently dense at higher solution concentrations. Both mechanisms are controlled by the decrease of micelle aggregation and subsequent increase of lattice density as solvent selectivity is reduced. These results shed new light on the relationship between micelle structure--"crewcut" or "hairy"--and long-range order in micelle solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号