首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let \({A=-(\nabla-i{\vec a})\cdot (\nabla-i{\vec a}) +V}\) be a magnetic Schrödinger operator acting on \({L^2({\mathbb R}^n)}\), n ≥  1, where \({{\vec a}=(a_1, \ldots, a_n)\in L^2_{\rm loc}({\mathbb R}^n, {\mathbb R}^n)}\) and \({0\leq V\in L^1_{\rm loc}({\mathbb R}^n)}\). In this paper, we show that when a function \({b\in {\rm BMO}({\mathbb R}^n)}\), the commutators [b, T k ]f = T k (b f) ? b T k f, k = 1, . . . , n, are bounded on \({L^p({\mathbb R}^n)}\) for all 1 < p < 2, where the operators T k are Riesz transforms (?/?x k  ? i a k )A ?1/2 associated with A.  相似文献   

2.
We prove the stability of the affirmative part of the solution to the complex Busemann–Petty problem. Namely, if K and L are origin-symmetric convex bodies in \({{\mathbb C}^n}\), n = 2 or n = 3, \({\varepsilon >0 }\) and \({{\rm Vol}_{2n-2}(K\cap H) \le {\rm Vol}_{2n-2}(L \cap H) + \varepsilon}\) for any complex hyperplane H in \({{\mathbb C}^n}\) , then \({({\rm Vol}_{2n}(K))^{\frac{n-1}n}\le({\rm Vol}_{2n}(L))^{\frac{n-1}n} + \varepsilon}\) , where Vol2n is the volume in \({{\mathbb C}^n}\) , which is identified with \({{\mathbb R}^{2n}}\) in the natural way.  相似文献   

3.
We consider the nonlinear curl-curl problem \({\nabla\times\nabla\times U + V(x) U= \Gamma(x)|U|^{p-1}U}\) in \({\mathbb{R}^3}\) related to the Kerr nonlinear Maxwell equations for fully localized monochromatic fields. We search for solutions as minimizers (ground states) of the corresponding energy functional defined on subspaces (defocusing case) or natural constraints (focusing case) of \({H({\rm curl};\mathbb{R}^3)}\). Under a cylindrical symmetry assumption corresponding to a photonic fiber geometry on the functions V and \({\Gamma}\) the variational problem can be posed in a symmetric subspace of \({H({\rm curl};\mathbb{R}^3)}\). For a defocusing case \({{\rm sup} \Gamma < 0}\) with large negative values of \({\Gamma}\) at infinity we obtain ground states by the direct minimization method. For the focusing case \({{\rm inf} \Gamma > 0}\) the concentration compactness principle produces ground states under the assumption that zero lies outside the spectrum of the linear operator \({\nabla \times \nabla \times +V(x)}\). Examples of cylindrically symmetric functions V are provided for which this holds.  相似文献   

4.
If φ is an analytic function bounded by 1 on the bidisk \({{\mathbb D}^2}\) and \({\tau\in\partial({\mathbb D}^2)}\) is a point at which φ has an angular gradient \({\nabla\varphi(\tau)}\) then \({\nabla\varphi(\lambda) \to \nabla\varphi(\tau)}\) as λ → τ nontangentially in \({{\mathbb D}^2}\). This is an analog for the bidisk of a classical theorem of Carathéodory for the disk. For φ as above, if \({\tau\in\partial({\mathbb D}^2)}\) is such that the lim inf of \({(1-|\varphi(\lambda)|)/(1-\|\lambda\|)}\) as λ → τ is finite then the directional derivative D ?δ φ(τ) exists for all appropriate directions \({\delta\in{\mathbb C}^2}\). Moreover, one can associate with φ and τ an analytic function h in the Pick class such that the value of the directional derivative can be expressed in terms of h.  相似文献   

5.
For a proper cone \({{\mathcal K}\subset\mathbb{R}^n}\) and its dual cone \({{\mathcal K}^*}\) the complementary slackness condition \({\langle{\rm {\bf x}},{\rm {\bf s}}\rangle=0}\) defines an n-dimensional manifold \({C({\mathcal K})}\) in the space \({{\mathbb R}^{2n}}\) . When \({{\mathcal K}}\) is a symmetric cone, points in \({C({\mathcal K})}\) must satisfy at least n linearly independent bilinear identities. This fact proves to be useful when optimizing over such cones, therefore it is natural to look for similar bilinear relations for non-symmetric cones. In this paper we define the bilinearity rank of a cone, which is the number of linearly independent bilinear identities valid for points in \({C({\mathcal K})}\) . We examine several well-known cones, in particular the cone of positive polynomials \({{\mathcal P}_{2n+1}}\) and its dual, and show that there are exactly four linearly independent bilinear identities which hold for all \({({\rm {\bf x}},{\rm {\bf s}})\in C({\mathcal P}_{2n+1})}\), regardless of the dimension of the cones. For nonnegative polynomials over an interval or half-line there are only two linearly independent bilinear identities. These results are extended to trigonometric and exponential polynomials. We prove similar results for Müntz polynomials.  相似文献   

6.
Let \({L(n)}\) be the language of group theory with n additional new constant symbols \({c_1,\ldots,c_n}\). In \({L(n)}\) we consider the class \({{\mathbb{K}}(n)}\) of all finite groups G of exponent \({p > 2}\), where \({G'\subseteq\langle c_1^G,\ldots,c_n^G\rangle \subseteq Z(G)}\) and \({c_1^G,\ldots,c_n^G}\) are linearly independent. Using amalgamation we show the existence of Fraïssé limits \({D(n)}\) of \({{\mathbb{K}}(n)}\). \({D(1)}\) is Felgner’s extra special p-group. The elementary theories of the \({D(n)}\) are supersimple of SU-rank 1. They have the independence property.  相似文献   

7.
We consider the robust (or min-max) optimization problem
$J^*:=\max_{\mathbf{y}\in{\Omega}}\min_{\mathbf{x}}\{f(\mathbf{x},\mathbf{y}): (\mathbf{x},\mathbf{y})\in\mathbf{\Delta}\}$
where f is a polynomial and \({\mathbf{\Delta}\subset\mathbb{R}^n\times\mathbb{R}^p}\) as well as \({{\Omega}\subset\mathbb{R}^p}\) are compact basic semi-algebraic sets. We first provide a sequence of polynomial lower approximations \({(J_i)\subset\mathbb{R}[\mathbf{y}]}\) of the optimal value function \({J(\mathbf{y}):=\min_\mathbf{x}\{f(\mathbf{x},\mathbf{y}): (\mathbf{x},\mathbf{y})\in \mathbf{\Delta}\}}\). The polynomial \({J_i\in\mathbb{R}[\mathbf{y}]}\) is obtained from an optimal (or nearly optimal) solution of a semidefinite program, the ith in the “joint + marginal” hierarchy of semidefinite relaxations associated with the parametric optimization problem \({\mathbf{y}\mapsto J(\mathbf{y})}\), recently proposed in Lasserre (SIAM J Optim 20, 1995-2022, 2010). Then for fixed i, we consider the polynomial optimization problem \({J^*_i:=\max\nolimits_{\mathbf{y}}\{J_i(\mathbf{y}):\mathbf{y}\in{\Omega}\}}\) and prove that \({\hat{J}^*_i(:=\displaystyle\max\nolimits_{\ell=1,\ldots,i}J^*_\ell)}\) converges to J* as i → ∞. Finally, for fixed ? ≤ i, each \({J^*_\ell}\) (and hence \({\hat{J}^*_i}\)) can be approximated by solving a hierarchy of semidefinite relaxations as already described in Lasserre (SIAM J Optim 11, 796–817, 2001; Moments, Positive Polynomials and Their Applications. Imperial College Press, London 2009).
  相似文献   

8.
Let \({{\|\cdot\|}}\) be a norm on \({\mathbb{R}^n}\) and \({\|.\|_*}\) be the dual norm. If \({\|\cdot\|}\) has a normalized 1-symmetric basis \({\{e_i\}_{i=1}^n}\) then the following inequalities hold: for all \({x,y\in \mathbb{R}^n}\), \({\|x\|\cdot\|y\|_*\le \max(\|x\|_1\cdot\|y\|_\infty,\|x\|_\infty\cdot\|y\|_1)}\) and if the basis is only 1-unconditional and normalized then for all \({x \in \mathbb{R}^n}\) , \({\|x\|+\|x\|_{*}\leq \|x\|_1+\|x\|_\infty}\) . We consider other geometric generalizations and apply these results to get, as a special case, estimates on best random embeddings of k-dimensional Hilbert spaces in the spaces of nuclear operators \({{\mathcal N}(K,K)}\) of dimension n 2, for all k = [λn 2] and 0 < λ < 1. We obtain universal upper bounds independent on the 1-symmetric norm \({\|.\|}\) for the products of pth moments
$\left( {\mathbb{E}} \left\|\sum_{i=1}^n f_i(\omega)\,e_i\right\|^p\cdot\, \mathbb {E} \left\|\sum_{i=1}^n f_i(\omega)\,e_i\right\|_*^p\right)^{1/p}$
for independent random variables {f i (ω)}, and 1 ≤ p < ∞.
  相似文献   

9.
We describe a class of discontinuous additive functions \({a:X\to X}\) on a real topological vector space X such that \({a^n={\rm id}_X}\) and \({a({\mathcal{H}}){\setminus} {\mathcal{H}}\neq\emptyset}\) for every infinite set \({{\mathcal{H}}\subset X}\) of vectors linearly independent over \({\mathbb{Q}}\). We prove the density of the family of all such functions in the linear topological space \({{\mathcal{A}}_X}\) of all additive functions \({a:X\to X}\) with the topology induced on \({{\mathcal{A}}_X}\) by the Tychonoff topology of the space XX. Moreover, we consider additive functions \({a\in{\mathcal{A}}_X}\) satisfying \({a^n={\rm id}_X}\) and \({a({\mathcal{H}})= {\mathcal{H}}}\) for some Hamel basis \({{\mathcal{H}}}\) of X. We show that the class of all such functions is also dense in \({{\mathcal{A}}_X}\). The method is based on decomposition theorems for linear endomorphisms.  相似文献   

10.
Let \({\mathbb{K}}\) be a field and \({S=\mathbb{K}[x_1,\dots,x_n]}\) be the polynomial ring in n variables over \({\mathbb{K}}\). Let G be a graph with n vertices. Assume that \({I=I(G)}\) is the edge ideal of G and \({J=J(G)}\) is its cover ideal. We prove that \({{\rm sdepth}(J)\geq n-\nu_{o}(G)}\) and \({{\rm sdepth}(S/J)\geq n-\nu_{o}(G)-1}\), where \({\nu_{o}(G)}\) is the ordered matching number of G. We also prove the inequalities \({{\rmsdepth}(J^k)\geq {\rm depth}(J^k)}\) and \({{\rm sdepth}(S/J^k)\geq {\rmdepth}(S/J^k)}\), for every integer \({k\gg 0}\), when G is a bipartite graph. Moreover, we provide an elementary proof for the known inequality reg\({(S/I)\leq \nu_{o}(G)}\).  相似文献   

11.
Let \({\mathcal L}\equiv-\Delta+V\) be the Schrödinger operator in \({{\mathbb R}^n}\), where V is a nonnegative function satisfying the reverse Hölder inequality. Let ρ be an admissible function modeled on the known auxiliary function determined by V. In this paper, the authors characterize the localized Hardy spaces \(H^1_\rho({{\mathbb R}^n})\) in terms of localized Riesz transforms and establish the boundedness on the BMO-type space \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) of these operators as well as the boundedness from \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) to \({\mathop\mathrm{BLO_\rho({\mathbb R}^n)}}\) of their corresponding maximal operators, and as a consequence, the authors obtain the Fefferman–Stein decomposition of \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) via localized Riesz transforms. When ρ is the known auxiliary function determined by V, \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) is just the known space \(\mathop\mathrm{BMO}_{\mathcal L}({{\mathbb R}^n})\), and \({\mathop\mathrm{BLO_\rho({\mathbb R}^n)}}\) in this case is correspondingly denoted by \(\mathop\mathrm{BLO}_{\mathcal L}({{\mathbb R}^n})\). As applications, when n?≥?3, the authors further obtain the boundedness on \(\mathop\mathrm{BMO}_{\mathcal L}({{\mathbb R}^n})\) of Riesz transforms \(\nabla{\mathcal L}^{-1/2}\) and their adjoint operators, as well as the boundedness from \(\mathop\mathrm{BMO}_{\mathcal L}({{\mathbb R}^n})\) to \(\mathop\mathrm{BLO}_{\mathcal L}({{\mathbb R}^n})\) of their maximal operators. Also, some endpoint estimates of fractional integrals associated to \({\mathcal L}\) are presented.  相似文献   

12.
We prove that there exists an absolute constant \({\alpha > 1}\) with the following property: if K is a convex body in \({{\mathbb R}^n}\) whose center of mass is at the origin, then a random subset \({X\subset K}\) of cardinality \({{\rm card}(X)=\lceil\alphan\rceil }\) satisfies with probability greater than \({1-e^{-c_1n}}\)
$$K\subseteq c_2n\, {\rm conv}(X),$$
where \({c_1, c_2 > 0}\) are absolute constants. As an application we show that the vertex index of any convex body K in \({{\mathbb R}^n}\) is bounded by \({c_3n^2}\), where \({c_3 > 0}\) is an absolute constant, thus extending an estimate of Bezdek and Litvak for the symmetric case.
  相似文献   

13.
In this paper we consider the Schrödinger operator ?Δ + V on \({\mathbb R^d}\), where the nonnegative potential V belongs to the reverse Hölder class \({B_{q_{_1}}}\) for some \({q_{_1}\geq \frac{d}{2}}\) with d ≥ 3. Let \({H^1_L(\mathbb R^d)}\) denote the Hardy space related to the Schrödinger operator L = ?Δ + V and \({BMO_L(\mathbb R^d)}\) be the dual space of \({H^1_L(\mathbb R^d)}\). We show that the Schrödinger type operator \({\nabla(-\Delta +V)^{-\beta}}\) is bounded from \({H^1_L(\mathbb R^d)}\) into \({L^p(\mathbb R^d)}\) for \({p=\frac{d}{d-(2\beta-1)}}\) with \({ \frac{1}{2}<\beta<\frac{3}{2} }\) and that it is also bounded from \({L^p(\mathbb R^d)}\) into \({BMO_L(\mathbb R^d)}\) for \({p=\frac{d}{2\beta-1}}\) with \({ \frac{1}{2}<\beta< 2}\).  相似文献   

14.
Let \({\mathcal{B}^\omega(p, q, B_d)}\) denote the \({\omega}\)-weighted Hardy–Bloch space on the unit ball B d of \({\mathbb{C}^d}\), \({d\ge 1}\). For \({2< p,q < \infty}\) and \({f\in \mathcal{B}^\omega(p, q, B_d)}\), we obtain sharp estimates on the growth of the p-integral means M p (f, r) as \({r\to 1-}\).  相似文献   

15.
We consider the Schrödinger operator \({e^{it\Delta}}\) acting on initial data f in \({\dot{H}^s}\). We show that an affirmative answer to a question of Carleson, concerning the sharp range of s for which \({\lim_{t\to 0}e^{it\Delta}f(x)=f(x)}\) a.e. \({x\in \mathbb {R}^n}\), would imply an affirmative answer to a question of Planchon, concerning the sharp range of q and r for which \({e^{it\Delta}}\) is bounded in \({L_x^q(\mathbb {R}^n,L^r_t(\mathbb {R}))}\). When n  =  2, we unconditionally improve the range for which the mixed norm estimates hold.  相似文献   

16.
We prove that a deformation of a hypersurface in an (n + 1)-dimensional real space form \({{\mathbb S}^{n+1}_{p,1}}\) induces a Hamiltonian variation of the normal congruence in the space \({{\mathbb L}({\mathbb S}^{n+1}_{p,1})}\) of oriented geodesics. As an application, we show that every Hamiltonian minimal submanifold in \({{\mathbb L}({\mathbb S}^{n+1})}\) (resp. \({{\mathbb L}({\mathbb H}^{n+1})}\)) with respect to the (para-)Kähler Einstein structure is locally the normal congruence of a hypersurface \({\Sigma}\) in \({{\mathbb S}^{n+1}}\) (resp. \({{\mathbb H}^{n+1}}\)) that is a critical point of the functional \({{\mathcal W}(\Sigma) = \int_\Sigma\left(\Pi_{i=1}^n|\epsilon+k_i^2|\right)^{1/2}}\), where ki denote the principal curvatures of \({\Sigma}\) and \({\epsilon \in \{-1, 1\}}\). In addition, for \({n = 2}\), we prove that every Hamiltonian minimal surface in \({{\mathbb L}({\mathbb S}^{3})}\) (resp. \({{\mathbb L}({\mathbb H}^{3})}\)), with respect to the (para-)Kähler conformally flat structure, is the normal congruence of a surface in \({{\mathbb S}^{3}}\) (resp. \({{\mathbb H}^{3}}\)) that is a critical point of the functional \({{\mathcal W}\prime(\Sigma) = \int_\Sigma\sqrt{H^2-K+1}}\) (resp. \({{\mathcal W}\prime(\Sigma) = \int_\Sigma\sqrt{H^2-K-1}}\)), where H and K denote, respectively, the mean and Gaussian curvature of \({\Sigma}\).  相似文献   

17.
Let \({\mathbb{X} \subset \mathbb {R}^n}\) be a bounded Lipschitz domain and consider the energy functional
$${{\mathbb F}_{\sigma_2}}[u; \mathbb{X}] := \int_\mathbb{X} {\mathbf F}(\nabla u) \, dx,$$
over the space of admissible maps
$${{\mathcal {A}_\varphi}(\mathbb{X}) :=\{u \in W^{1,4}(\mathbb{X}, {\mathbb{R}^n}) : {\rm det}\, \nabla u > 0\, {\rm for}\, {\mathcal {L}^n}{\rm -a.e. in}\, \mathbb{X}, u|_{\partial \mathbb{X}} =\varphi \}},$$
where the integrand \({{\mathbf F}\colon \mathbb M_{n\times n}\to \mathbb{R}}\) is quasiconvex and sufficiently regular. Here our attention is paid to the prototypical case when \({{\mathbf F}(\xi):=\frac{1}{2}\sigma_2(\xi)+\Phi(\det\xi)}\). The aim of this paper is to discuss the question of multiplicity versus uniqueness for extremals and strong local minimizers of \({\mathbb F_{\sigma_2}}\) and the relation it bares to the domain topology. In contrast, for constructing explicitly and directly solutions to the system of Euler–Lagrange equations associated to \({{\mathbb F}_{\sigma_2}}\), we use a topological class of maps referred to as generalised twists and relate the problem to extremising an associated energy on the compact Lie group \({\mathbf {SO}(n)}\). The main result is a surprising discrepancy between even and odd dimensions. In even dimensions the latter system of equations admits infinitely many smooth solutions amongst such maps whereas in odd dimensions this number reduces to one.
  相似文献   

18.
Let \({\varphi}\) be a Musielak–Orlicz function satisfying that, for any \({(x,\,t)\in{\mathbb R}^n \times [0, \infty)}\), \({\varphi(\cdot,\,t)}\) belongs to the Muckenhoupt weight class \({A_\infty({\mathbb R}^n)}\) with the critical weight exponent \({q(\varphi) \in [1,\,\infty)}\) and \({\varphi(x,\,\cdot)}\) is an Orlicz function with uniformly lower type \({p^{-}_{\varphi}}\) and uniformly upper type \({p^+_\varphi}\) satisfying \({q(\varphi) < p^{-}_{\varphi}\le p^{+}_{\varphi} < \infty}\). In this paper, the author obtains a sharp weighted bound involving \({A_\infty}\) constant for the Hardy–Littlewood maximal operator on the Musielak–Orlicz space \({L^{\varphi}}\). This result recovers the known sharp weighted estimate established by Hytönen et al. in [J. Funct. Anal. 263:3883–3899, 2012].  相似文献   

19.
Let \({n\in\mathbb{N}}\). For \({k\in\{1,\dots,n\}}\) let \({\Omega_k\subset \mathbb{C}}\) be a simply connected domain with a rectifiable boundary. Let \({\Omega^n=\prod_{k=1}^n\Omega_k\subset \mathbb{C}^n}\) be a generalized polydisk with distinguished boundary \({\partial\Omega^n=\prod_{k=1}^n\partial\Omega_k}\). Let E r n ) be the holomorphic Smirnov class on Ω n with index r. We show that the generalized isoperimetric inequality
$ \int\limits_{\Omega^n} |f_1|^p|f_2|^qdV\le \frac{1}{(4\pi)^n}\int\limits_{\partial \Omega^n}|f_1|^pdS \int\limits_{\partial \Omega^n} |f_2|^qdS, $
holds for arbitrary \({f_1\in E^p(\Omega^n)}\) and \({f_2\in E^q(\Omega^n)}\), where 0 < p, q < ∞. We also determine necessary and sufficient conditions for equality.
  相似文献   

20.
In this paper, we study complete oriented f -minimal hypersurfaces properly immersed in a cylinder shrinking soliton \((\mathbb{S}^n \times \mathbb{R},\bar g,f)\).We prove that such hypersurface with L f -index one must be either \(\mathbb{S}^n \times \{ 0\}\) or \(\mathbb{S}^{n - 1} \times \mathbb{R}\), where \({S}^{n - 1}\) denotes the sphere in \(\mathbb{S}^n\) of the same radius. Also we prove a pinching theorem for them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号