首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The bilayer packing states of a series of diacylphosphatidylcholines (CnPC) containing linear saturated acyl chains were examined by a high-pressure fluorescence method. We revealed from the second derivatives of Prodan fluorescence spectra for all bilayer membranes that the Prodan molecules can be distributed into multiple sites in these bilayer membranes and move around the head-group region, depending on the phase state. The hydrophobicity of the PC molecules markedly affected the distribution quantities of the Prodan molecules between the gel and liquid crystalline phases. The distribution of the Prodan molecules into the gel phase decreased with the increasing acyl chain length while that into the liquid crystalline phase conversely increased. The present study suggests that Prodan can sensitively recognize the packing states and strengths in the bilayer membranes and becomes a good packing indicator.  相似文献   

2.
Tilt of hydrocarbon chains of lipid molecules with respect to membrane plane is commonly considered to characterize the internal structure of a membrane in the crystalline state. However, membranes in the liquid state can also exhibit tilt resulting from packing constraints imposed on the lipid molecules in diverse biologically relevant structures such as intermediates of membrane fusion, pores in lipid bilayers and others. We analyze the energetics of tilt in liquid membranes and its coupling with membrane bending. We consider three contributions to the elastic energy: constant tilt, variation of tilt along the membrane surface and membrane bending. The major assumption of the model is that the core of a liquid membrane has the common properties of an elastic continuum. We show that the variation of tilt and membrane bending are additive and that their energy contributions are determined by the same elastic coefficient: the Helfrich bending modulus, the modulus of Gaussian curvature and the spontaneous curvature known from previous studies of pure bending. The energy of a combined deformation of bending and varying tilt is determined by an effective tensor accounting for the two factors. In contrast, the deformation of constant tilt does not couple with bending and its contribution to the elastic energy is determined by an independent elastic constant. While accurate determination of this constant requires additional measurements, we estimate its value using a simplified approach. We discuss the relationships between the obtained elastic Hamiltonian of a membrane and the previous models of membrane elasticity. Received 10 February 2000 and Received in final form 19 June 2000  相似文献   

3.
发展了一种非显示溶剂的粗粒化三粒子磷脂模型,该模型明确反映磷脂分子的双尾结构.模型分别采用变形的MIE作用势和Harmonic作用势描述分子间非成键和分子内成键相互作用,粗粒化力场参数通过拟合DPPC双分子层的结构和力学性质获得.该粗粒化模型成功重现了磷脂分子从随机初始态到双分子层和从盘状结构到囊泡的形成过程.应用该模型系统研究了球形和柱形磷脂微滴囊泡化的过程,结果表明此模型能有效地模拟介观尺度下复杂磷脂囊泡的形成及演化.  相似文献   

4.
The density of the elastic energy of a deformed membrane in a liquid state is calculated. The thermodynamic equilibrium of its different parts is taken into account. The shape equation of a closed membrane is deduced. The quantity which keeps its value, when the variations of the energy of the system are calculated, is not the area of the deformed membrane, but its area in the flat tension free state. Because of this, additional terms appear in the second variation around the stable state. The case of a lipid bilayer and its fluctuations is examined for both free and blocked exchange of molecules between the monolayers, comprising the bilayer. Received 4 February 2002 / Received in final form 15 April 2002 Published online 2 October 2002 RID="a" ID="a"e-mail: bivas@issp.bas.bg  相似文献   

5.
Lipid bilayers have been largely used as model systems for biological membranes. Hence, their structures, and alterations caused on them by biological active molecules, have been the subject of many studies. Accordingly, fluorescent probes incorporated into lipid bilayers have been extensively used for characterizing lipid bilayer fluidity and/or polarity. However, for the proper analysis of the alterations undergone by a membrane, a comprehensive knowledge of the fluorescent properties of the probe is fundamental. Therefore, the present work compares fluorescent properties of a relative new fluorescent membrane probe, 2-amino-N-hexadecyl-benzamide (Ahba), with the largely used probe 6-dodecanoyl-N,N-dimethyl-2-naphthylamine (Laurdan), using both static and time resolved fluorescence. Both Ahba and Laurdan have the fluorescent moiety close to the bilayer surface; Ahba has a rather small fluorescent moiety, which was shown to be very sensitive to the bilayer surface pH. The main goal was to point out the fluorescent properties of each probe that are most sensitive to structural alterations on a lipid bilayer. The two probes were incorporated into bilayers of the well-studied zwitterionic lipid dimyristoyl phosphatidylcholine (DMPC), which exhibits a gel-fluid transition around 23 °C. The system was monitored between 5 and 50 °C, hence allowing the study of the two different lipid structures, the gel and fluid bilayer phases, and the transition between them. As it is known, the fluorescent emission spectrum of Laurdan is highly sensitive to the bilayer gel-fluid transition, whereas the Ahba fluorescence spectrum was found to be insensitive to changes in bilayer structure and polarity, which are known to happen at the gel-fluid transition. However, both probes monitor the bilayer gel-fluid transition through fluorescence anisotropy measurements. With time-resolved fluorescence, it was possible to show that bilayer structural variations can be monitored by Laurdan excited state lifetimes changes, whereas Ahba lifetimes were found to be insensitive to bilayer structural modifications. Through anisotropy time decay measurements, both probes could monitor structural bilayer changes, but the limiting anisotropy was found to be a better parameter than the rotational correlation time. It is interesting to have in mind that the relatively small fluorophore of Ahba (o-Abz) could possibly be bound to a phospholipid hydrocarbon chain, not disturbing much the bilayer packing and being a sensitive probe for the bilayer core.  相似文献   

6.
The association and photobehavior of Rose Bengal (RB) in the presence of dipalmitoylphosphatidyl choline (DPPC) small unilamellar liposomes is determined by the temperature. At temperatures above the main phase transition of the bilayer, the incorporation of the dye is ca. 2.5 times more efficient than that taking place when the bilayer is in the gel state. In both temperature ranges, adsorption isotherms show a noticeable anti-cooperativity that can be related to electrostatic repulsion between bound molecules. The photophysics and the photochemistry of the bound dye molecules also depend on the bilayer status. In particular, in the liquid crystalline state the surrounding of the dye is more polar and production of singlet oxygen is less efficient (Φ∼0.1). This reduced singlet oxygen production is partially due to a low triplet yield (ΦT=0.35) and triplet self-quenching due to a high local RB concentration. In spite of these, tryptophan is efficiently photobleached when RB is associated to liposomes in the liquid crystalline state, probably due to a Type I mechanism favored by its high local concentration in the sensitized surroundings.  相似文献   

7.
Cellular membranes of mammals are composed of a complex assembly of diverse phospholipids. Sphingomyelin (SM) and phosphatidylcholine (PC) are important lipids of eukaryotic cellular membranes and neuronal tissues, and presumably participate in the formation of membrane domains, known as "rafts," through intermolecular interaction and lateral microphase decomposition. In these two-dimensional membrane systems, lateral diffusion of lipids is an essential dynamic factor, which might even be indicative of lipid phase separation process. Here, we used pulsed field gradient nuclear magnetic resonance to study lateral diffusion of lipid components in macroscopically oriented bilayers composed of equimolar mixtures of natural SMs of egg yolk, bovine brain, bovine milk and dipalmitoylphosphatidylcholine (DPPC) with dioleoylphosphatidylcholine (DOPC). In addition, differential scanning calorimetry was used as a complementary technique to characterize the phase state of the lipid bilayers. In fully liquid bilayers, the lateral diffusion coefficients in both DOPC/DPPC and DOPC/SM systems exhibit mean values of the pure bilayers. For DOPC/SM bilayer system, this behavior can be explained by a model where most SM molecules form short-lived lateral domains with preferential SM-SM interactions occurring within them. However, for bilayers in the presence of their low-temperature gel phase, lateral diffusion becomes complicated and cannot simply be understood solely by a simple change in the liquid phase decomposition.  相似文献   

8.
We report on the wetting behavior of phospholipid membranes on solid surfaces immersed in aqueous solution. Using fluorescence microscopy, the spreading velocity of fluid bilayers advancing from a lipid source is investigated. The kinetic spreading coefficient was measured as a function of temperature for pure DMPC membranes and as a function of charge density and cholesterol content for binary membranes. A theoretical model for the membrane flow is presented, which takes into account the liquid crystalline bilayer architecture of the lipid membrane. The spreading power results from the membrane-solid VdW interaction and is dissipated in hydrodynamic shear flow as well as by inter-monolayer friction within the bilayer. The frictional drag causes a dynamic tension gradient in the spreading membrane, which is manifested by a single exponential decay of the fluorescence intensity profile along the spreading direction. Obstacles are shown to act as pinning centers deforming the advancing line interface. However, no depinning was observed, since the centers are circumflown without abrupt relaxation. Received 6 November 1998  相似文献   

9.
10.
Molecular dynamics simulations have been performed on the fully hydrated lipid bilayer with different concentrations of sodium dodecyl sulfate(SDS). SDS can readily penetrate into the membrane. The insertion of SDS causes a decrease in the bilayer area and increases in the bilayer thickness and lipid tail order, when the fraction of SDS is less than 28%.Through calculating the binding energy, we confirm that the presence of SDS strengthens the interactions among the DPPC lipids, while SDS molecules act as intermedia. Both the strong hydrophilic interactions between sulfate and phosphocholine groups and the hydrophobic interactions between SDS and DPPC hydrocarbon chains contribute to the tight packing and ordered alignment of the lipids. These results are in good agreement with the experimental observations and provide atomic level information that complements the experiments.  相似文献   

11.
We have studied the packing and collective dynamics of the phospholipid acyl chains in a model membrane composed of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) and cholesterol in varied phase state. After a structural characterization of this two-component model bilayer using X-ray reflectivity, we have carried out coherent inelastic neutron scattering to investigate the chain dynamics. Both DMPC/cholesterol membranes exhibited much sharper and more pronounced low-energy inelastic excitations than a pure DMPC membrane. In the high-energy regime above 10meV, the insertion of cholesterol into the membrane was found to shift the position of the inelastic excitation towards values otherwise found in the pure lipids gel phase. Thus, the dissipative collective short-range dynamics of the acyl chains is strongly influenced by the presence of cholesterol.  相似文献   

12.
Laurdan (2-dimethylamino-6-lauroylnaphthalene) is a hydrophobic fluorescent probe widely used in lipid systems. This probe was shown to be highly sensitive to lipid phases, and this sensitivity related to the probe microenvironment polarity and viscosity. In the present study, Laurdan was incorporated in 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DPPG), which has a phase transition around 41°C, and DLPC (1,2-dilauroyl-sn-glycero-3-phosphocholine), which is in the fluid phase at all temperatures studied. The temperature dependence of Laurdan fluorescent emission was analyzed via the decomposition into two gaussian bands, a short- and a long-wavelength band, corresponding to a non-relaxed and a water-relaxed excited state, respectively. As expected, Laurdan fluorescence is highly sensitive to DPPG gel–fluid transition. However, it is shown that Laurdan fluorescence, in DLPC, is also dependent on the temperature, though the bilayer phase does not change. This is in contrast to the rather similar fluorescent emission obtained for the analogous hydrophilic probe, Prodan (2-dimethylamino-6-propionylnaphthalene), when free in aqueous solution, over the same range of temperature. Therefore, Laurdan fluorescence seems to be highly dependent on the lipid bilayer packing, even for fluid membranes. This is supported by Laurdan fluorescence anisotropy and spin labels incorporated at different positions in the fluid lipid bilayer of DLPC. The latter were used both as structural probes for bilayer packing, and as Laurdan fluorescence quenchers. The results confirm the high sensitivity of Laurdan fluorescence emission to membrane packing, and indicate a rather shallow position for Laurdan in the membrane.  相似文献   

13.
The interaction between Eu(III) tris-β-diketonato coordination complexes (EC), displaying antitumor activity, and lipid vesicles composed of zwitterionic lipid phosphatidylcholine has been studied using fluorescence spectroscopy techniques. To characterize EC-membrane binding, several fluorescent probes, including pyrene, Prodan and 1,6-diphenyl-1,3,5-hexatriene, have been employed. It has been found that EC display effective partitioning into lipid phase, giving rise to structural modifications of both polar and nonpolar lipid bilayer regions, viz. enhancement of membrane hydration and increase in tightness of lipid chain packing. The fact that EC accumulating in lipid bilayer are incapable of inducing significant disruption of membrane structural integrity creates strong prerequisites for development of liposomal nanocarriers of these potential antitumor drugs. Such a possibility is also corroborated by the observation that EC membrane incorporation does not prevent lipid bilayer partitioning of long-wavelength squaraine dyes which represent promising candidates for visualization of liposome biodistribution.  相似文献   

14.
Salicylic acid (SA), a keratolytic drug, is used to treat skin disorder like corns, warts, and acne. To understand the mechanism by which SA interacts with the cell membranes, we have investigated its interaction with dipalmitoyl phosphatidylethanolamine (DPPE) vesicles using DSC, 1H NMR and Raman spectroscopy. Presence of drug asymmetrically broadened the acyl chain melting transition and shifted the transition temperature, T m, to lower value. Both, NMR and DSC studies indicate that the drug molecules are located in the glycerol backbone region of the lipid bilayer and increase the membrane headgroup fluidity. At high drug concentration, additional transitions are observed whose intensity increases with increasing drug concentration. In cholesterol doped DPPE dispersion the interaction of SA with DPPE bilayer is more. The transformation of the gel phase of DPPE dispersion to a stable crystalline subgel phase(s) is accelerated by the presence of SA.  相似文献   

15.
The gamma-gamma perturbed angular correlation technique has been used to measure the relative motion of lipid molecules in synthetic phospholipid bilayers perfused with the anesthetic gas nitrous oxide. Time-integrated anisotropies for 111In, attached to the lipid headgroups, were determined above and below the order-fluid transition temperature. Compared to results with the pure bilayer, the data showed a three-fold decrease above and a four-fold decrease below the phase transition, suggesting a more ordered state of the membrane in the presence of the anesthetic.  相似文献   

16.
The line tension of a symmetric, lipid bilayer in its liquid-crystalline state is calculated on the basis of a molecular lipid model. The lipid model extends the opposing forces model by an expression for the conformational free energy of the hydrocarbon chains. We consider a membrane edge that consists of a perturbed bilayer covered by a section of a cylinder-like micelle. The structural rearrangement of the lipids implies an excess free energy which we minimize with respect to the cross-sectional shape of the membrane edge, including both the micellar and the bilayer region. The line tension is derived as a function of molecular lipid properties, like the lipid chain length or the head group interaction strength. We also relate it to the spontaneous curvature of the lipid layer. We find the line tension to become smaller for lipid layers that tend to curve more towards the hydrophobic core. Our predictions for the line tension and their relation to experimentally derived values are discussed. Received 2 January 2000  相似文献   

17.
We have constructed a mixed dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylglycerol bilayer (DOPG) bilayer utilizing MD simulations. The aim was to develop an explicit molecular model of biological membranes as a complementary technique to neutron diffraction studies that are well established within the group. A monolayer was constructed by taking a previously customized PDB file of each molecule and arranging them in a seven rows of ten molecules and duplicated and rotated to form a bilayer. The 140-molecule bilayer contained 98 DOPC molecules and 42 DOPG molecules, in a 7:3 ratio in favour of DOPC. Sodium counter ions were placed near the phosphate moiety of DOPG to counteract the negative charge of DOPG. This was representative of the lipid ratio in a sample used for neutron diffraction. The MD package GROMACS was used for confining the bilayer in a triclinic box, adding Simple Polar Charge water molecules, energy minimization (EM). The bilayer/solvent system was subjected to EM using the steepest descent method to nullify bad contacts and reduce the potential energy of the system. Subsequent MD simulation using an initial NVT (constant number of particles, volume and temperature) for a 20 ps MD run followed by a NPT (constant number of particles, pressure and temperature) was performed. Structural parameters including volume of lipid, area of lipid, order parameter of the fatty acyl carbons and electron density profiles generated by the MD simulation were verified with values obtained from experimental data of DOPC, as there are no comparable experimental data available for the mixed bilayer.  相似文献   

18.
(13)C cross polarization magic angle spinning (CP-MAS) and (1)H MAS NMR spectra were collected on egg sphingomyelin (SM) bilayers containing cholesterol above and below the liquid crystalline phase transition temperature (T(m)). Two-dimensional (2D) dipolar heteronuclear correlation (HETCOR) spectra were obtained on SM bilayers in the liquid crystalline (L(alpha)) state for the first time and display improved resolution and chemical shift dispersion compared to the individual (1)H and (13)C spectra and significantly aid in spectral assignment. In the gel (L(beta)) state, the (1)H dimension suffers from line broadening due to the (1)H-(1)H homonuclear dipolar coupling that is not completely averaged by the combination of lipid mobility and MAS. This line broadening is significantly suppressed by implementing frequency switched Lee-Goldburg (FSLG) homonuclear (1)H decoupling during the evolution period. In the liquid crystalline (L(alpha)) phase, no improvement in line width is observed when FSLG is employed. All of the observed resonances are assignable to cholesterol and SM environments. This study demonstrates the ability to obtain 2D heteronuclear correlation experiments in the gel state for biomembranes, expands on previous SM assignments, and presents a comprehensive (1)H/(13)C NMR assignment of SM bilayers containing cholesterol. Comparisons are made to a previous report on cholesterol chemical shifts in dimyristoylphosphatidylcholine (DMPC) bilayers. A number of similarities and some differences are observed and discussed.  相似文献   

19.
The properties of subterahertz longitudinal acoustic phonon modes in the hydrophobic region of a lipid bilayer immersed in a compressible viscous aqueous medium are investigated theoretically. An approximate expression is obtained for the Mandelstam–Brillouin components of the dynamic structure factor of a bilayer. The analysis is based on a generalized hydrodynamic model of the “two-dimensional lipid bilayer + three-dimensional fluid medium” system, as well as on known sharp estimates for the frequencies and lifetimes of long-wavelength longitudinal acoustic phonons in a free hydrated lipid bilayer and in water, obtained from inelastic X-ray scattering experiments and molecular dynamics simulations. It is shown that, for characteristic values of the parameters of the membrane system, subterahertz longitudinal phonon-like excitations in the hydrophobic part of the bilayer are underdamped. In this case, the contribution of the viscous flow of the aqueous medium to the damping of a longitudinal membrane mode is small compared with the contribution of the lipid bilayer. Quantitative estimates of the damping ratio agree well with the experimental results for the vibration mode of the enzyme lysozyme in aqueous solution [1]. It is also shown that a coupling between longitudinal phonon modes of the bilayer and relaxation processes in its fluid environment gives rise to an additional peak in the scattering spectrum, which corresponds to a non-propagating mode.  相似文献   

20.
The platelet membrane receptor alpha(IIb) beta(3) binds to adsorbed protein ligands including fibrinogen, von Willebrand factor and fibronectin, and is critically important in mediating platelet adhesion to damaged subendothelium and to synthetic biomaterial surfaces. This receptor is a member of the integrin family, a highly prevalent class of heterodimeric molecules consisting of a single alpha and beta subunit. In an ongoing effort to understand the mechanisms underlying platelet adhesion events, high-resolution atomic force microscopy (AFM) under dynamic conditions was used to obtain images of alpha(IIb) beta(3) molecules as well as aggregates of the protein. Images of integrin molecules were obtained by tapping mode AFM under aqueous buffer conditions following adsorption on a series of ultrasmooth model surfaces. On a model hydrophobic surface, detergents stabilizing the protein in solution competed for surface adsorption sites. When this detergent was removed from the system, the protein was predominantly seen as aggregates with head groups pointing outward. A limited number of individual integrin molecules were observed, and were found to have dimensions consistent with those reported previously by electron microscopy studies. Integrin molecules showed weak adhesion to the two hydrophilic surfaces used in the study, although formation of a lipid bilayer around surface-adsorbed molecules improved the resolution. At longer time periods, the integrin molecules embedded in this lipid bilayer exhibited sufficient mobility to form molecular aggregates. The structural measurements described in this study not only reveal three-dimensional features of the molecule, they represent an important step towards dynamic adsorption experiments and visualizing the integrin interacting with surface-adsorbed proteins as in biomaterial-induced thrombogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号