首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal decomposition of the benzyl radical was studied in shock tube experiments using ultraviolet laser absorption at 266 nm for detection of benzyl. Test gas mixtures of 50 and 100 ppm of benzyl iodide dilute in argon were heated in reflected shock waves to temperatures ranging from 1430 to 1730 K at total pressures around 1.5 bar. The temporal behavior of the 266 nm absorption allowed for determination of the benzyl absorption cross-section at 266 nm and the rate coefficient for benzyl decomposition, C6H5CH2 --> C7H6 + H. The rate coefficient for benzyl decomposition at 1.5 bar can be described using a two-parameter Arrhenius expression by k1(T) = 8.20 x 10(14) exp(-40 600 K/T) [s(-1)], and the benzyl absorption cross-section at 266 nm was determined to be sigma(benzyl) = 1.9 x 10(-17) cm2 molecule(-1) with no discernible temperature dependence over the temperature range of the experiments.  相似文献   

2.
The rate constants for the reactions of OH radicals with benzene and toluene have been measured directly by a shock tube/pulsed laser-induced fluorescence imaging method at high temperatures. The OH radicals were generated by the thermal decomposition of nitric acid or tert-butyl hydroperoxide. The derived Arrhenius expressions for the rate constants were k(OH + benzene) = 8.0 x 10(-11) exp(-26.6 kJ mol(-1)/RT) [908-1736 K] and k(OH + toluene) = 8.9 x 10(-11) exp(-19.7 kJ mol(-1)/RT) [919-1481 K] in the units of cubic centimeters per molecule per second. Transition-state theory (TST) calculations based on quantum chemically predicted energetics confirmed the dominance of the H-atom abstraction channel for OH + benzene and the methyl-H abstraction channel for OH + toluene in the experimental temperature range. The TST calculation indicated that the anharmonicity of the C-H-O bending vibrations of the transition states is essential to reproduce the observed rate constants. Possible implications to the other analogous H-transfer reactions were discussed.  相似文献   

3.
The reaction of hydroxyl [OH] radicals with toluene [C6H5CH3] was studied at temperatures between 911 and 1389 K behind reflected shock waves at pressures of approximately 2.25 atm. OH radicals were generated by rapid thermal decomposition of shock-heated tert-butyl hydroperoxide [(CH3)3-CO-OH], and monitored by narrow-line width ring dye laser absorption of the well-characterized R1(5) line of the OH A-X (0,0) band near 306.7 nm. OH time histories were modeled by using a comprehensive toluene oxidation mechanism. Rate constants for the reaction of C6H5CH3 with OH were extracted by matching modeled and measured OH concentration time histories in the reflected shock region. Detailed error analyses yielded an uncertainty estimate of +/-30% at 1115 K for the rate coefficient of this reaction. The current high-temperature data were fit with the lower temperature measurements of Tully et al. [J. Phys. Chem. 1981, 85, 2262-2269] to the following two-parameter form, applicable over 570-1389 K: k3 = (1.62 x 10(13)) exp(-1394/T [K]) [cm3 mol(-1) s(-1)]. The reaction between OH radicals and acetone [CH3COCH3] was one of the secondary reactions encountered in the toluene + OH experiments. Direct high-temperature measurements of this reaction were carried out at temperatures ranging from 982 to 1300 K in reflected shock wave experiments at an average total pressure of 1.65 atm. Uncertainty limits were estimated to be +/-25% at 1159 K. A two-parameter fit of the current data yields the following rate expression: k6 = (2.95 x 10(13)) exp(-2297/T [K]) [cm3 mol(-1) s(-1)].  相似文献   

4.
The pyrolysis of toluene, the simplest methyl-substituted aromatic molecule, has been studied behind reflected shock waves using a single pulse shock tube. Experiments were performed at nominal high pressures of 27 and 45 bar and spanning a wide temperature range from 1200 to 1900 K. A variety of stable species, ranging from small hydrocarbons to single ring aromatics (principal soot precursors such as phenylacetylene and indene) were sampled from the shock tube and analyzed using standard gas chromatographic techniques. A detailed chemical kinetic model with 262 reactions and 87 species was assembled to simulate the stable species profiles (specifically toluene, benzene and methane) from the current high-pressure pyrolysis data sets and shock tube-atomic resonance absorption spectrometry (ARAS) H atom profiles obtained from prior toluene pyrolysis experiments performed under similar high-temperature conditions and lower pressures from 1.5 to 8 bar. The primary steps in toluene pyrolysis represent the most sensitive and dominant reactions in the model. Consequently, in the absence of unambiguous direct experimental measurements, we have utilized recent high level theoretical estimates of the barrierless association rate coefficients for these primary reactions, C6H5 + CH3 --> C6H5CH3 (1a) and C6H5CH2 + H --> C6H5CH3 (1b) in the detailed chemical kinetic model. The available data sets can be successfully reconciled with revised values for deltaH0f(298K)(C6H5CH2) = 51.5 +/- 1.0 kcal/mol and deltaH0f(298K)(C6H5) = 78.6 +/- 1.0 kcal/mol that translate to primary dissociation rate constants, reverse of 1a and 1b, represented by k(-1a,infinity) = (4.62 x 10(25))T(-2.53)exp[-104.5 x 10(3)/RT] s(-1) and k(-1b,infinity) = (1.524 x 10(16))T(-0.04)exp[-93.5 x 10(3)/RT] s(-1) (R in units of cal/(mol K)). These high-pressure limiting rate constants suggest high-temperature branching ratios for the primary steps that vary from 0.39 to 0.52 over the temperature range 1200-1800 K.  相似文献   

5.
Reactions of ground-state NH (3sigma-) radicals with H2, H2O, and CO2 have been investigated quantum chemically, whereby the stationary points of the appropriate reaction potential energy surfaces, that is, reactants, products, intermediates, and transition states, have been identified at the G3//B3LYP level of theory. Reaction between NH and H2 takes place via a simple abstraction transition state, and the rate coefficient for this reaction as derived from the quantum chemical calculations, k(NH + H2) = (1.1 x 10(14)) exp(-20.9 kcal mol(-1)/RT) cm3 mol(-1) s(-1) between 1000 and 2000 K, is found to be in good agreement with experiment. For reaction between triplet NH and H2O, no stable intermediates were located on the triplet reaction surface although several stable species were found on the singlet surface. No intersystem crossing seam between triplet NH + H2O and singlet HNO + H2 (the products of lowest energy) was found; hence there is no evidence to support the existence of a low-energy pathway to these products. A rate coefficient of k(NH + H2O) = (6.1 x 10(13)) exp(-32.8 kcal mol(-1)/RT) cm3 mol(-1) s(-1) between 1000 and 2000 K for the reaction NH (3sigma-) + H2O --> NH2 (2B) + OH (2pi) was derived from the quantum chemical results. The reverse rate coefficient, calculated via the equilibrium constant, is in agreement with values used in modeling the thermal de-NO(x) process. For the reaction between triplet NH and CO2, several stable intermediates on both triplet and singlet reaction surfaces were located. Although a pathway from triplet NH + CO2 to singlet HNO + CO involving intersystem crossing in an HN-CO2 adduct was discovered, no pathway of sufficiently low activation energy was discovered to compare with that found in an earlier experiment [Rohrig, M.; Wagner, H. G. Proc. Combust. Inst. 1994, 25, 993.].  相似文献   

6.
The thermal decomposition of acetaldehyde, CH3CHO + M --> CH3 + HCO + M (eq 1), and the reaction CH3CHO + H --> products (eq 6) have been studied behind reflected shock waves with argon as the bath gas and using H-atom resonance absorption spectrometry as the detection technique. To suppress consecutive bimolecular reactions, the initial concentrations were kept low (approximately 10(13) cm(-3)). Reaction was investigated at temperatures ranging from 1250 to 1650 K at pressures between 1 and 5 bar. The rate coefficients were determined from the initial slope of the hydrogen profile via k1 = [CH3CHO]0(-1) x d[H]/dt, and the temperature dependences observed can be expressed by the following Arrhenius equations: k1(T, 1.4 bar) = 2.9 x 10(14) exp(-38 120 K/T) s(-1), k1(T, 2.9 bar) = 2.8 x 10(14) exp(-37 170 K/T) s(-1), and k1(T, 4.5 bar) = 1.1 x 10(14) exp(-35 150 K/T) s(-1). Reaction was studied with C2H5I as the H-atom precursor under pseudo-first-order conditions with respect to CH3CHO in the temperature range 1040-1240 K at a pressure of 1.4 bar. For the temperature dependence of the rate coefficient the following Arrhenius equation was obtained: k6(T) = 2.6 x 10(-10) exp(-3470 K/T) cm(3) s(-1). Combining our results with low-temperature data published by other authors, we recommend the following expression for the temperature range 300-2000 K: k6(T) = 6.6 x 10(-18) (T/K) (2.15) exp(-800 K/T) cm(3) s(-1). The uncertainties of the rate coefficients k1 and k6 were estimated to be +/-30%.  相似文献   

7.
The H2 permeation of a supported 2 microm thick Pd48Cu52 membrane was investigated between 373 and 909 K at DeltaP=0.1 MPa. The initial H2 flux was 0.3 mol.m(-2).s(-1) at 723 K with an ideal H2/N2 selectivity better than 5000. The membrane underwent a bcc-fcc (body-centered cubic to face-centered cubic) phase transition between 723 and 873 K resulting in compositional segregation. After reannealing at 723 K the alloy layer reverted to a bcc structure although a small fcc fraction remained behind. The mixed-phase morphology was analyzed combining X-ray diffraction with scanning electron microscopy-energy-dispersive spectroscopic analysis (SEM-EDS) measurements, which revealed micrometer-scale Cu-enriched bcc and Cu-depleted fcc domains. The H2 flux JH2 of the fcc Pd48Cu52 single phase layer prevailing above 873 K could be described by an Arrhenius law with JH2=(7.6+/-4.9) mol.m(-2).s(-1) exp[(-32.9+/-4.5) kJ.mol(-1)/(RT)]. The characterization of the H2 flux in the mixed-phase region required two Arrhenius laws, i.e., JH2=(1.35+/-0.14) mol.m(-2).s(-1) exp[(-10.3+/-0.5) kJ.mol(-1)/(RT)] between 523 and ca. 700 K and JH2=(56.1+/-9.3) mol.m(-2).s(-1) exp[(-25.3+/-0.6) kJ.mol(-1)/(RT)] below 454 K. The H2 flux exhibited a square root pressure dependence above 523 K, but the pressure exponent gradually increased to 0.77 upon cooling to 373 K. The activation energy and pressure dependence in the intermediate temperature range are consistent with a diffusion-limited H2 transport, while the changes of these characteristics at lower temperatures indicate a desorption-limited H2 flux. The prevalence of desorption as the permeation rate-limiting step below 454 K is attributed to the pairing of an extraordinarily high hydrogen diffusivity with a marginal hydrogen solubility in bcc PdCu alloys. These result in an acceleration of the bulk diffusion rate and a deceleration of the desorption rate, respectively, allowing the bulk diffusion rate to surpass the desorption rate up to relatively high temperatures.  相似文献   

8.
Diallylphenyl, allylbenzylphenyl and allylmethylphenyl phosphines were pyrolized in a stirred-flow reactor at 380–429°C/7-20 torr, using toluene as carrier gas. The reaction products were propene, 1-phospha-1,3-butadiene, 1-phospha-1,2-diphenylethylene and 1-phosphaethylene. The phospha-alkenes formed evolve into cyclo addition products. The propene elimination reaction showed first-order kinetics with rate coefficients following the Arrhenius equations: Diallylphenylphosphine: k(s−1) = 1010.57 ± 0.31 exp(-143 ± 4 kJ/mol.RT) Allylbenzylphenylphosphine: k(s−1) = 109.71 ± 0.47 exp(-135 ± 6 kJ/mol.RT) Allylbenzylphenylphosphine: k(s−1) = 109.61 ± 0.61 exp(-144 ± 9 kJ/mol.RT) A six-center cyclic transition state unimolecular reaction mechanism, consistent with the above Arrhenius parameters, is proposed for the propene elimination reaction.  相似文献   

9.
The laser flash photolysis resonance fluorescence technique was used to monitor atomic Cl kinetics. Loss of Cl following photolysis of CCl4 and NaCl was used to determine k(Cl + C6H6) = 6.4 x 10(-12) exp(-18.1 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 578-922 K and k(Cl + C6D6) = 6.2 x 10(-12) exp(-22.8 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 635-922 K. Inclusion of literature data at room temperature leads to a recommendation of k(Cl + C6H6) = 6.1 x 10(-11) exp(-31.6 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) for 296-922 K. Monitoring growth of Cl during the reaction of phenyl with HCl led to k(C6H5 + HCl) = 1.14 x 10(-12) exp(+5.2 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 294-748 K, k(C6H5 + DCl) = 7.7 x 10(-13) exp(+4.9 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 292-546 K, an approximate k(C6H5 + C6H5I) = 2 x 10(-11) cm(3) molecule(-1) s(-1) over 300-750 K, and an upper limit k(Cl + C6H5I) < or = 5.3 x 10(-12) exp(+2.8 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 300-750 K. Confidence limits are discussed in the text. Third-law analysis of the equilibrium constant yields the bond dissociation enthalpy D(298)(C6H5-H) = 472.1 +/- 2.5 kJ mol(-1) and thus the enthalpy of formation Delta(f)H(298)(C6H5) = 337.0 +/- 2.5 kJ mol(-1).  相似文献   

10.
The kinetics of the CH3 + Cl2 (k2a) and CD3 + Cl2 (k2b) reactions were studied over the temperature range 188-500 K using laser photolysis-photoionization mass spectrometry. The rate constants of these reactions are independent of the bath gas pressure within the experimental range, 0.6-5.1 Torr (He). The rate constants were fitted by the modified Arrhenius expression, k2a = 1.7 x 10(-13)(T/300 K)(2.52)exp(5520 J mol(-1)/RT) and k2b = 2.9 x 10(-13)(T/300 K)(1.84)exp(4770 J mol(-1)/RT) cm(3) molecule(-1) s(-1). The results for reaction 2a are in good agreement with the previous determinations performed at and above ambient temperature. Rate constants of the CH3 + Cl2 and CD3 + Cl2 reactions obtained in this work exhibit minima at about 270-300 K. The rate constants have positive temperature dependences above the minima, and negative below. Deuterium substitution increases the rate constant, in particular at low temperatures, where the effect reaches ca. 45% at 188 K. These observations are quantitatively rationalized in terms of stationary points on a potential energy surface based on QCISD/6-311G(d,p) geometries and frequencies, combined with CCSD(T) energies extrapolated to the complete basis set limit. 1D tunneling as well as the possibility of the negative energies of the transition state are incorporated into a transition state theory analysis, an approach which also accounts for prior experiments on the CH3 + HCl system and its various deuterated isotopic substitutions [Eskola, A. J.; Seetula, J. A.; Timonen, R. S. Chem. Phys. 2006, 331, 26].  相似文献   

11.
Methanation of CO over nickel: Mechanism and kinetics at high H2/CO ratios   总被引:3,自引:0,他引:3  
The CO methanation reaction over nickel was studied at low CO concentrations and at hydrogen pressures slightly above ambient pressure. The kinetics of this reaction is well described by a first-order expression with CO dissociation at the nickel surface as the rate-determining step. At very low CO concentrations, adsorption of CO molecules and H atoms compete for the sites at the surface, whereas the coverage of CO is close to unity at higher CO pressures. The ratio of the equilibrium constants for CO and H atom adsorption, K(CO)/K(H), was obtained from the rate of CO methanation at various CO concentrations. K(H) was determined independently from temperature programmed adsorption/desorption of hydrogen to be K(H) = 7.7 x 10(-4) (bar(-0.5)) exp[43 (kJ/mol)/RT] and hence the equilibrium constants for adsorption of CO molecules may be calculated to be K(CO) = 3 x 10(-7) (bar(-1)) exp[122 (kJ/mol)/RT]. Furthermore, the rate of dissociation of CO at the catalyst surface was determined to be 5 x 10(9) (s(-1)) exp[-96.7 (kJ/mol)/RT] assuming that 5% of the surface nickel atoms are active for CO dissociation. The results are compared to equilibrium and rate constants reported in the literature.  相似文献   

12.
Dially(4-fluorophenyl)phosphine and allyl(t-butylamino)phenylphosphine were pyrolyzed in a stirred-flow reactor at 340–420°C/9–19 Torr, using toluene as carrier gas. The primary reaction products were propene, 1-(4-fluorophenyl)-1-phosphabutadiene, and 1-phenyl-2-t-butyliminophosphine. The phosphorus-containing products gave rise to [4 + 2] and [2 + 2] cycloaddition products, respectively. The consumption of these phosphines showed first-order kinetics, with the rate coefficients following the Arrhenius equations: Dially(4-fluorophenyl)phosphine: k(s−1) = 109.00±0.32 exp (- 122 ± 4 kJ/mol RT) Allyl(t-butylamino)phenylphosphine: k(s−1) = 109.04±0.25 exp (-113 ± 3 kJ/mol RT) The results support a six-center cyclic transition-state unimolecular elimination reaction mechanism for both reactants. © 1997 John Wiley & Sons, Inc.  相似文献   

13.
Rate coefficients, k1(T), over the temperature range of 210-390 K are reported for the gas-phase reaction OH + HC(O)C(O)H (glyoxal) --> products at pressures between 45 and 300 Torr (He, N2). Rate coefficients were determined under pseudo-first-order conditions in OH using pulsed laser photolysis production of OH radicals coupled with OH detection by laser-induced fluorescence. The rate coefficients obtained were independent of pressure and bath gas. The room-temperature rate coefficient, k1(296 K), was determined to be (9.15 +/- 0.8) x 10-12 cm3 molecule-1 s-1. k1(T) shows a negative temperature dependence with a slight deviation from Arrhenius behavior that is reproduced over the temperature range included in this study by k1(T) = [(6.6 +/- 0.6) x 10-18]T2[exp([820 +/- 30]/T)] cm3 molecule-1 s-1. For atmospheric modeling purposes, a fit to an Arrhenius expression over the temperature range included in this study that is most relevant to the atmosphere, 210-296 K, yields k1(T) = (2.8 +/- 0.7) x 10-12 exp[(340 +/- 50)/T] cm3 molecule-1 s-1 and reproduces the rate coefficient data very well. The quoted uncertainties in k1(T) are at the 95% confidence level (2sigma) and include estimated systematic errors. Comparison of the present results with the single previous determination of k1(296 K) and a discussion of the reaction mechanism and non-Arrhenius temperature dependence are presented.  相似文献   

14.
The title reaction has been investigated in a diaphragmless shock tube by laser schlieren densitometry over the temperature range 1163-1629 K and pressures of 60, 120, and 240 Torr. Methyl radicals were produced by dissociation of 2,3-butanedione in the presence of an excess of dimethyl ether. Rate coefficients for CH(3) + CH(3)OCH(3) were obtained from simulations of the experimental data yielding the following expression which is valid over the range 1100-1700 K: k = (10.19 ± 3.0)T(3.78)?exp((-4878/T)) cm(3) mol(-1)s(-1). The experimental results are in good agreement with estimates by Curran and co-workers [Fischer, S. L.; Dryer, F. L.; Curran, H. J. Int. J. Chem. Kinet.2000, 32 (12), 713-740. Curran, H. J.; Fischer, S. L.; Dryer, F. L. Int. J. Chem. Kinet.2000, 32 (12), 741-759] but about a factor of 2.6 lower than those of Zhao et al. [Zhao, Z.; Chaos, M.; Kazakov, A.; Dryer, F. L. Int. J. Chem. Kinet.2008, 40 (1), 1-18].  相似文献   

15.
We have studied the two-channel thermal decomposition of methyl radicals in argon, involving the reactions CH3 + Ar --> CH + H2 + Ar (1a) and CH3 + Ar --> CH2 + H + Ar (1b), in shock tube experiments over the 2253-3527 K temperature range, at pressures between 0.7 and 4.2 atm. CH was monitored by continuous-wave, narrow-line-width laser absorption at 431.1311 nm. The collision-broadening coefficient for CH in argon, 2gamma(CH-Ar), was measured via repeated single-frequency experiments in the ethane pyrolysis system behind reflected shock waves. The measured 2gamma(CH-Ar) value and updated spectroscopic and molecular parameters were used to calculate the CH absorption coefficient at 431.1311 nm (23194.80 cm(-1)), which was then used to convert raw traces of fractional transmission to quantitative CH concentration time histories in the methyl decomposition experiments. The rate coefficient of reaction 1a was measured by monitoring CH radicals generated upon shock-heating highly dilute mixtures of ethane, C2H6, or methyl iodide, CH3I, in an argon bath. A detailed chemical kinetic mechanism was used to model the measured CH time histories. Within experimental uncertainty and scatter, no pressure dependence could be discerned in the rate coefficient of reaction 1a in the 0.7-4.2 atm pressure range. A least-squares, two-parameter fit of the current measurements, applicable between 2706 and 3527 K, gives k(1a) (cm(3) mol(-1) s(-1)) = 3.09 x 1015 exp[-40700/T (K)]. The rate coefficient of reaction 1b was determined by shock-heating dilute mixtures of C2H6 or CH3I and excess O2 in argon. During the course of reaction, OH radicals were monitored using the well-characterized R(1)(5) line of the OH A-X (0,0) band at 306.6871 nm (32606.52 cm(-1)). H atoms generated via reaction 1b rapidly react with O2, which is present in excess, forming OH. The OH traces are primarily sensitive to reaction 1b, reaction 9 (H + O2 --> OH + O) and reaction 10 (CH3 + O2 --> products), where the rate coefficients of reactions 9 and 10 are relatively well-established. No pressure dependence could be discerned for reaction 1b between 1.1 and 3.9 atm. A two-parameter, least-squares fit of the current data, valid over the 2253-2975 K temperature range, yields the rate expression k(1b) (cm(3) mol(-1) s(-1)) = 2.24 x 10(15) exp[-41600/T (K)]. Theoretical calculations carried out using a master equation/RRKM analysis fit the measurements reasonably well.  相似文献   

16.
The reactions of SO3 with H, O, and OH radicals have been investigated by ab initio calculations. For the SO3 + H reaction (1), the lowest energy pathway involves initial formation of HSO3 and rearrangement to HOSO2, followed by dissociation to OH + SO2. The reaction is fast, with k(1) = 8.4 x 10(9)T(1.22) exp(-13.9 kJ mol(-1)/RT) cm(3) mol(-1) s(-1) (700-2000 K). The SO3 + O --> SO2 + O2 reaction (2) may proceed on both the triplet and singlet surfaces, but due to a high barrier the reaction is predicted to be slow. The rate constant can be described as k(2) = 2.8 x 10(4)T(2.57) exp(-122.3 kJ mol(-1)/RT) cm(3) mol(-1) s(-1) for T > 1000 K. The SO3 + OH reaction to form SO2 + HO2 (3) proceeds by direct abstraction but is comparatively slow, with k(3) = 4.8 x 10(4)T(2.46) exp(-114.1 kJ mol(-) 1/RT) cm(3) mol(-1) s(-1) (800-2000 K). The revised rate constants and detailed reaction mechanism are consistent with experimental data from batch reactors, flow reactors, and laminar flames on oxidation of SO2 to SO3. The SO3 + O reaction is found to be insignificant during most conditions of interest; even in lean flames, SO3 + H is the major consumption reaction for SO3.  相似文献   

17.
18.
本文报道了用流动放电-化学发光技术测定O(~3P)和硅烷化学反应速率常数.在293—413K范围内, 结果为k=(1.05±0.36)×10~(-10)exp[(-3.06±0.10) kcal·mol~(-1) /RT] cm~3·molecule~(-1)·s~(-1)并用过渡态理论将上述实验结果外推到200—2000 K范围内. 计算结果以三参数公式表示为: k=7.67×10~(-19) T~(2.59) exp(-720 cal·mol~(-1)/RT) cm~3·molecule~(-1)·s~(-1).  相似文献   

19.
Synthetic studies are reported that show that the reaction of either H2SnR2 (R = Ph, n-Bu) or HMo(CO)3(Cp) (1-H, Cp = eta(5)-C5H5) with Mo(N[t-Bu]Ar)3 (2, Ar = 3,5-C6H3Me2) produce HMo(N[t-Bu]Ar)3 (2-H). The benzonitrile adduct (PhCN)Mo(N[t-Bu]Ar)3 (2-NCPh) reacts rapidly with H2SnR2 or 1-H to produce the ketimide complex (Ph(H)C=N)Mo(N[t-Bu]Ar)3 (2-NC(H)Ph). The X-ray crystal structures of both 2-H and 2-NC(H)Ph are reported. The enthalpy of reaction of 1-H and 2 in toluene solution has been measured by solution calorimetry (DeltaH = -13.1 +/- 0.7 kcal mol(-1)) and used to estimate the Mo-H bond dissociation enthalpy (BDE) in 2-H as 62 kcal mol(-1). The enthalpy of reaction of 1-H and 2-NCPh in toluene solution was determined calorimetrically as DeltaH = -35.1 +/- 2.1 kcal mol(-1). This value combined with the enthalpy of hydrogenation of [Mo(CO)3(Cp)]2 (1(2)) gives an estimated value of 90 kcal mol(-1) for the BDE of the ketimide C-H of 2-NC(H)Ph. These data led to the prediction that formation of 2-NC(H)Ph via nitrile insertion into 2-H would be exothermic by approximately 36 kcal mol(-1), and this reaction was observed experimentally. Stopped flow kinetic studies of the rapid reaction of 1-H with 2-NCPh yielded DeltaH(double dagger) = 11.9 +/- 0.4 kcal mol(-1), DeltaS(double dagger) = -2.7 +/- 1.2 cal K(-1) mol(-1). Corresponding studies with DMo(CO)3(Cp) (1-D) showed a normal kinetic isotope effect with kH/kD approximately 1.6, DeltaH(double dagger) = 13.1 +/- 0.4 kcal mol(-1) and DeltaS(double dagger) = 1.1 +/- 1.6 cal K(-1) mol(-1). Spectroscopic studies of the much slower reaction of 1-H and 2 yielding 2-H and 1/2 1(2) showed generation of variable amounts of a complex proposed to be (Ar[t-Bu]N)3Mo-Mo(CO)3(Cp) (1-2). Complex 1-2 can also be formed in small equilibrium amounts by direct reaction of excess 2 and 1(2). The presence of 1-2 complicates the kinetic picture; however, in the presence of excess 2, the second-order rate constant for H atom transfer from 1-H has been measured: 0.09 +/- 0.01 M(-1) s(-1) at 1.3 degrees C and 0.26 +/- 0.04 M(-1) s(-1) at 17 degrees C. Study of the rate of reaction of 1-D yielded kH/kD = 1.00 +/- 0.05 consistent with an early transition state in which formation of the adduct (Ar[t-Bu]N)3Mo...HMo(CO)3(Cp) is rate limiting.  相似文献   

20.
The rate constant for the reaction of OH radicals with molecular hydrogen was measured using the flash photolysis resonance-fluorescence technique over the temperature range of 200-479 K. The Arrhenius plot was found to exhibit a noticeable curvature. Careful examination of all possible systematic uncertainties indicates that this curvature is not due to experimental artifacts. The rate constant can be represented by the following expressions over the indicated temperature intervals: k(H2)(250-479 K) = 4.27 x 10(-13) x (T/298)2.406 x exp[-1240/T] cm3 molecule(-1) (s-1) above T = 250 K and k(H2)(200-250 K) = 9.01 x 10(-13) x exp[-(1526 +/- 70)/T] cm3 molecule(-1) s(-1) below T = 250 K. No single Arrhenius expression can adequately represent the rate constant over the entire temperature range within the experimental uncertainties of the measurements. The overall uncertainty factor was estimated to be f(H2)(T) = 1.04 x exp[50 x /(1/T) - (1/298)/]. These measurements indicate an underestimation of the rate constant at lower atmospheric temperatures by the present recommendations. The global atmospheric lifetime of H2 due to its reaction with OH was estimated to be 10 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号