首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The optical properties of the asymmetric double semi-parabolic quantum wells (DSPQWs) are investigated numerically for typical GaAs/AlxGa1−xAs. Optical properties are obtained using the compact density matrix approach. In this work, effects of the structure parameters such as the barrier width and the well widths on the optical properties of the asymmetric DSPQWs are investigated. The results show that the linear and nonlinear optical properties of asymmetric DSPQW are non-monotonic functions of these structure parameters. The behavior of the refractive index changes of asymmetric DSPQW with the variation of the barrier width is different substantially with that of symmetric DSPQW. Results reveal that the resonant peak values of the total absorption coefficient of asymmetric DSPQW is usually greater than that of symmetric DSPQW. Our calculations also show that the total absorption coefficient of asymmetric DSPQW is larger than that of asymmetric double square quantum well.  相似文献   

2.
In the present theoretical study, the linear and third-order nonlinear optical absorption coefficients have been calculated in GaAs/Ga1−x Al x As inverse parabolic quantum wells (single and double) subjected to an external electric field. Our calculations are based on the potential morphing method in the effective mass approximation. The systematic theoretical investigation contains results with all possible combinations of the involved parameters, as quantum well width, quantum barrier width, Al concentration at each well center and magnitude of the external electric field. Our results indicate that in most cases investigated, the increase of the electric field blue-shifts the peak positions of the total absorption coefficient. In all cases studied it became apparent that the incident optical intensity considerably affects the total absorption coefficient.  相似文献   

3.
F. Ungan 《Journal of luminescence》2011,131(11):2237-2243
In the present work, the changes in the intersubband optical absorption coefficients and the refractive index in a modulation-doped quantum well have been investigated theoretically. Within the envelope function approach and the effective mass approximation, the electronic structure of the quantum well is calculated from the self-consistent numerical solution of the coupled Schrödinger-Poisson equations. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. The numerical results GaAs/AlxGa1−xAs are presented for typical modulation-doped quantum well system. The linear, third-order nonlinear and total absorption and refractive index changes depending on the doping concentration are investigated as a function of the incident optical intensity and structure parameters, such as quantum well width and stoichiometric ratio. The results show that the doping concentration, the structure parameters and the incident optical intensity have a great effect on the optical characteristics of these structures.  相似文献   

4.
The binding energy of the exciton in the symmetric and asymmetric GaAs/Ga1  xAlxAs quantum wells is calculated with the use of a variational approach. Results have been obtained as a function of the potential symmetry, and the size of the quantum well in the presence of an arbitrary magnetic field. The applied magnetic field is taken to be parallel to the axis of growth of the quantum well structure. The role of the asymmetric barriers, magnetic field, and well width in the excitonic binding is discussed as the tunability parameters of the GaAs/Ga1  xAlxAs system.  相似文献   

5.
The linear and the third-order nonlinear optical absorptions in the asymmetric double triangular quantum wells (DTQWs) are investigated theoretically. The dependence of the optical absorption on the right-well width of the DTQWs is studied, and the influence of the applied electric field on the optical absorption is also taken into account. The analytical expressions of the linear and the nonlinear optical absorption coefficients are obtained by using the compact density-matrix approach and the iterative method. The numerical calculations are presented for the typical GaAs/AlxGa1?xAs asymmetric DTQWs. The results show that the linear as well as the nonlinear optical absorption coefficients are not a monotonous function of the right-well width, but have complex relationships with it. Moreover, the calculated results also reveal that applying an electric field to the DTQWs with a thinner right-well can enhance the linear optical absorption but has no prominent influence on the nonlinear optical absorption. In addition, the total optical absorption is strongly dependent on the incident optical intensity.  相似文献   

6.
In this work, both the intersubband optical absorption coefficients and the refractive index changes are calculated exactly in a quantum box. Analytical expressions for the linear and nonlinear intersubband absorption coefficients and refractive index changes are obtained by using the compact-density matrix approach. Numerical results are presented for typical GaAs/AlxGa1−x As quantum box system. The linear, third-order nonlinear and total absorption and refractive index changes are investigated as a function of the incident optical intensity and structure parameters such as box-edge length and stoichiometric ratio. Our results show that both the incident optical intensity and the structure parameters have a great effect on the total absorption and refractive index changes.  相似文献   

7.
In this article, the optical absorption coefficients in an asymmetric ridge quantum wire within the framework of the density matrix formalism are studied. The energy spectrum and wave functions of a quantum wire with graded confinement potential using the effective mass approximation are analytically calculated. The results show that parameters such as the asymmetry and width of the potential well change the position and magnitude of the absorption peak and saturation intensity. The incident optical intensity also has a great effect on the total absorption.  相似文献   

8.
In the recombination spectra of AlGaAs/GaAs heterostructures, a peculiar and asymmetric photoluminescence (PL) band F has previously been reported [Aloulou et al., Mater. Sci. Eng. B 96 (2002) 14] to be due to recombinations of confined electrons from the two-dimensional electron gas (2DEG) formed at AlGaAs/GaAs interface in asymmetric quantum well (AQW). Detailed experiments are reported here on GaAs/Al0.31Ga0.69As/GaAs:δSi/Al0.31Ga0.69As/GaAs samples with different spacer layer thicknesses. We show that the band F is the superposition of two PL bands F′ and F″ associated, respectively, to AQW and a symmetric quantum well (SQW). In the low excitation regime, the F′ band present a blue shift (4.4 meV) followed by important red shift (16.5 meV) when increasing optical excitation intensity. The blue shift in energy is interpreted in terms of optical control of the 2DEG density in the AQW while the red shift is due to the narrowing of the band gaps caused by the local heating of the sample and band bending modification for relatively high-optical excitation intensity. Calculation performed using self-consistent resolution of the coupled Schrödinger–Poisson equations are included to support the interpretation of the experimental data.  相似文献   

9.
We have calculated the optical gain spectra in unstrained graded GaAs/AlxGa1 − xAs single quantum well lasers as a function of the energy of the radiation, the quantum well width and the interface thickness. The optical gain spectra were calculated using the density matrix approach (Luttinger–Kohn method), considering the parabolic band model (conduction band), all subband mixing between the heavy and light holes (valence band), and the transversal electrical light polarization. Our results show that the optical peak gain is sensitive to the width and the graded profile of the interfaces, and is blue-shifted as a function of the interface width.  相似文献   

10.
An asymmetric quantum well(AQW) is designed to emit terahertz(THz) waves by using difference frequency generation(DFG) with the structure of GaAs/Al 0.2 Ga 0.8 As/Al 0.5 Ga 0.5 As.The characteristics of absorption coefficients are analysed under the parabolic and non-parabolic energy-band conditions in detail.We find that the absorption coefficients vary with the two pump optical intensities,and they reach the maxima when the pump wavelengths are given as λ p1 = 9.70 μm and λ p2 = 10.64 μm,respectively.Compared with non-parabolic conditions,the total absorption coefficient under parabolic conditions shows a blue shift,which is due to the increase in the energy difference between the ground and excited states.By adjusting the two pump optical intensities,the wave vector phase-matching condition inside the AQW is satisfied.  相似文献   

11.
In this work, the effects of the electric field on the optical properties of the symmetric and asymmetric double semi-parabolic quantum wells (DSPQWs) are investigated numerically for typical GaAs/AlxGa1−xAs. Optical properties are obtained using the compact density matrix approach. Our calculations for the asymmetric DSPQW show that the resonant peak values of the total refractive index change and total optical absorption coefficient are maximum for a certain value of the applied electric field, due to the anti-crossing effect. However, for the symmetric DSPQW, the resonant peak values of these optical properties decrease monotonically with increasing the applied electric field. Also, our results indicate that a larger value of the optical rectification coefficient of the symmetric DSPQW can be induced by applying a small electric field.  相似文献   

12.
Al0.91Ga0.09N epilayers have been obtained by pulsed atomic layer epitaxy (PALE) technique on sapphire (0 0 0 1) substrates. Deep ultraviolet (DUV) photoluminescence (PL) spectroscopy and Raman scattering spectrum have been employed to study the optical transitions in Al0.91Ga0.09N epilayers. We found the exciton-phonon interaction by fitting the asymmetric PL peak, in which the transverse optical phonon (TO) and the longitudinal optical (LO) phonon are the main contributor. The abnormal S-shaped temperature dependence of the PL band peak is less pronounced or has disappeared. Further analysis shows that there possibly exists a high density of deeper localized state (∼90 meV) in Al0.91Ga0.09N. The formation of these localized states provides a favorable condition for efficient light emission.  相似文献   

13.
The investigation of the evolution of the photoluminescence spectra, in single asymmetric quantum wells (SAQWs), from a typical emission spectrum to a Fermi-edge singularity, is carried out as a function of both the optical excitation intensity and the temperature. The three samples used here are n-doped, low carrier density (below 5×1011 cm−2), GaAs/Al0.35Ga0.65As SAQWs grown by molecular beam epitaxy. The strong collective recombination of electrons with different k states up to the Fermi wave vector as well as the optical signature of the Fermi-edge singularity is observed in two samples containing residual acceptors inside the GaAs SAQW. In contrast, a third sample containing no experimental evidence of residual acceptors in the GaAs SAQW shows no optical signature of the Fermi-edge singularity.  相似文献   

14.
We report the observation of relative saturation among excitonic emission peaks at different sets of interface islands in growth-interrupted asymmetric-coupled quantum well GaAs/Al0.2Ga0.8As structures. The saturation is due to sequential filling of excitonic states at different sets of interface islands. In contrast to free excitonic states, the small total area density of excitonic states at the interface islands makes their filling observable at much lower excitation levels. As a result of the relative saturation, an effective blue shift of the apparent excitonic emission peak at the islands, with a magnitude as large as ∼6.1 meV is observed when the excitation intensity increases from ∼1.6 to ∼215 W cm−2. The highest intensity required to observe the effective blue shift is about two orders of magnitude lower than that needed to observe a similar effect in a free excitonic emission peak.  相似文献   

15.
We report optical characterization of high quality quantum well (QW) structures grown by metal-organic vapour-phase epitaxy (MOVPE). Thin QW layers of GaAs of thicknesses between 20 Å and 80 Å inserted between Al0.36Ga0.64 As confining layers as well as nominally 20 Å QW's in AlxGa1−xAs with varying x have been studied. Exciton confinement energies exceeding 250 meV and a FWHM of 6 meV for the thinnest QW have been observed. The photoluminescence (PL) data allows the observation of monolayer fluctuations in the QW widths and indicates an interface abruptness of about one atomic layer. Photoluminescence excitation spectroscopy allows electronic excited states to be seen.  相似文献   

16.
Using quantum mechanics GASTEP software package based on the first principle density function theory, the electronic structure and optical properties of Ga1−xAlxAs at different Al constituent are calculated. Result shows that with the increase of Al constituent, the band gap of Ga1−xAlxAs increases and varies from direct band gap to indirect band gap; the absorption band edge and the absorption peak move to high-energy side; the static reflectivity decreases. With the increasing of the incident photon energy, Ga1−xAlxAs shows metal reflective properties in certain energy range. With the increasing of Al constituent, static dielectric constant decreases and the intersection of dielectric function and the x-axis move towards high-energy side; the peak of energy loss function move to low-energy side and the peak value reduces.  相似文献   

17.
The intersubband optical absorption in symmetric and asymmetric, single and coupled, double GaAs/ Ga1 − xAlxAs quantum wells is calculated. The results have been obtained in the presence of a uniform electric field as a function of the potential symmetry, size of the quantum well, and coupling parameter of the wells. In coupled double quantum wells we obtain a large Stark effect that can be used to fabricate tuneable photodetectors. We show that the effect of an applied electric field on the intersubband optical absorption is similar to changes in the dimensions of the structure. This behaviour in the intersubband optical absorption for different wells and barrier geometries can be used to study these systems in regions of interest, without the need for the growth of many different samples.  相似文献   

18.
S PANDA  B K PANDA 《Pramana》2012,78(5):827-833
The effect of conduction band nonparabolicity on the linear and nonlinear optical properties such as absorption coefficients, and changes in the refractive index are calculated in the Al0.3Ga0.7As/GaAs heterostructure-based symmetric rectangular quantum well under applied hydrostatic pressure and electric field. The electron envelope functions and energies are calculated in the effective mass equation including the conduction band nonparabolicity. The linear and nonlinear optical properties have been calculated in the density matrix formalism with two-level approximation. The conduction band nonparabolicity shifts the positions of the optical properties and decreases their strength compared to those without this correction. Both the optical properties are enhanced with the applied hydrostatic pressure. While the absorption coefficients are bleached under the combined effect of high pressure and electric field, the bleaching effect is reduced when nonparabolicity is included.  相似文献   

19.
LWIR InAs/Al0.3Ga0.7As/In0.15Ga0.85As confinement-enhanced DWELL (CE-DWELL) QDIPs with operation temperatures higher than 200 K are reported. A thin Al0.3Ga0.7As barrier layer was inserted above the InAs QDs to improve the confinement of QD states in the In0.15Ga0.85As DWELL structure and the device performance. The better confinement of the electronic states increases the oscillator strength of the infrared absorption. The higher excited state energy also improves the escape probability of the photoelectrons. Compared with the conventional DWELL QDIPs, the quantum efficiency increases for more than 20 times and the detectivity is an order of magnitude higher at 77 K. With better device parameters of CE-DWELL, it is possible to achieve high quantum efficiency, high operating temperature and long wavelength detection at the same time.  相似文献   

20.
The linear and the nonlinear intersubband optical absorption in the symmetric double semi-parabolic quantum wells are investigated for typical GaAs/AlxGa1−xAs. Energy eigenvalues and eigenfunctions of an electron confined in finite potential double quantum wells are calculated by numerical methods from Schrödinger equation. Optical properties are obtained using the compact density matrix approach. In this work, the effects of the barrier width, the well width and the incident optical intensity on the optical properties of the symmetric double semi-parabolic quantum wells are investigated. Our results show that not only optical incident intensity but also structure parameters such as the barrier and the well width really affect the optical characteristics of these structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号