首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A study of the distribution of gallium(III) between hydrochloric acid solutions and 0.1M 4-(5-nonyl)-pyridine in benzene has been undertaken. Gallium can be quantitatively extracted from moderate to concentrated acid solutions and also from dilute acid solutions containing high concentrations of neutral cations of high charge density. The effects of acidity, the solvent concentration and diverse ions on the extraction have been investigated. An attempt has been made to elucidate the stoichiometry of the extracted species. The formulation of (NPy H)+ GaCl 4 ) and (NPy−H−NPy)+ GaCl 4 is expected at macro and trace concentrations of the metal. The extraction coefficients of several elements have been recorded under conditions optional for the extraction of gallium; and their factors for separations are estimated.  相似文献   

2.
Solven extraction separation of americium(III) from dilute aqueous nitrate media into n-dodecane by bis(2-ethylhexyl)sulfoxide (BESO) has been investigated over a wide range of experimentgal conditioins. Very poor extractablity of Am(III), necessitated the use of calcium nitrate as the salting-out agent. Effects of certain variables such as acidity, extractant concentration, salting-out agent concentration, organic diluents on the metal extraction by BESO have been examined in detail. By increasing the concentration of BESO in organic phase or calcium nitrate in aqueous phase, nearly quantitative extraction of americium even from moderate acidity is accomplished. Slope analyses applied to Am(III) distribution experiments from acidic nitrate solutions indicate predominant formation of the risolvated organic phase complex, Am(NO3)3)·3BESO for which equilibrium constant is found to be, log Kx=1.99. Extraction behavior of Am(III) has also been evlauated in the presence of several water-miscible polar organic solvents to stuy their possible synergistic effects on its extraction. Extractability of americium increased 5 to 10-fold withi increasing conentration of some of these additives, with maximum enhancement being observed in the presence of acetone or acetonitrile. Recovery of BESO from loaded americium is easily obtained using dilute nitric acid as the strippant.  相似文献   

3.
The stability constants of the 1: 1 complexes of trivalent actinide and lanthanide cations with O-donor ligands (OH, CO32−; carboxylate anions: acetate, propionate, isobutyrate, benzoate) formed in aqueous solutions have been approximately calculated by integrating the ligand density distribution function. The contributions of the covalent interaction to the formation of coordination bonds of these cations with O-donor ligands have been estimated.  相似文献   

4.
The extraction equilibrium of ternary ion-association complexes formed between the tetrachloro complexes of thallium(III) and ditetrazolium salts, neotetrazolium chloride (NTC)[2,2′,5,5′-tetraphenyl-3-3′-(p-biphenylene)ditetrazolium chloride] and nitrobluetetrazolium chloride (NBT)[3,3′-dianizole-4,4′-bis-2-(4-nitrophenyl-5-phenyltetrazolium chloride], has been studied. As a result, the extraction constants, the distribution constants, the association constants, the distribution coefficients of thallium(III) and the extraction indicators R, have been calculated. The results have been evaluated statistically. The relative standard deviations Sr have been calculated at a statistical certainty of 95%. The ratio ditetrazolium salts/TlCl 4 =1∶2 has been confirmed once again.  相似文献   

5.
Benzyldimethyldodecylammonium nitrate and benzyltrioctylammonium nitrate were used for the extraction of Am(III) from aqueous nitrate solutions. The dependence of the extraction performance for Am(III) on the concentration of nitric acid, the kind and concentration of salting-out agents in the aqueous phase, and the kind of solvent was investigated. Americium is extracted by the above quarternary salts as a R4NAm(NO3)4 associate. The extraction of Am(III) is compared with the extraction of lanthanides. The high differences in the distribution coefficients for lanthanides and americium can be utilized for the separation of lanthanides and americium.  相似文献   

6.
The dependence on ionic strength of protonation of nitrilotriacetic acid and its complexation with W(VI) is reported in sodium perchlorate, sodium nitrate and sodium chloride solutions as background salts. The measurements have been performed at 25°C and various ionic strengths in the range 0.1–1.0 mol dm−3, using a combination of potentiometric and spectrophotometric techniques. The overall analysis of the present and the previous data dealing with the determination of stability constants at different ionic strengths allowed us to obtain a general equation, by which a formation constant determined at a fixed ionic strength can be calculated, with a good approximation, at another ionic strength, if 0.1 ≤ ionic strength ≤ 1.0 mol dm−3 sodium perchlorate, sodium nitrate or sodium chloride.  相似文献   

7.
The extraction of chromium(VI) from aqueous hydrochloric, nitric and sulfuric acid solutions by diphenyl-2-pyridylmethane(DPPM) dissolved in chloroform has been studied. Chromium(VI) is quantitatively extracted from hydrochloric acid solutions in the range 0.1–1M. With increasing acid concentration, the extraction of chromium diminishes and in concentrated acid solutions practically all the chromium remains in the aqueous phase. The quantitative back-extraction of chromium from the organic phase is possible with HCl or HNO3 at concentrations higher than 5M through the use of reducing agents. The composition of the extracted chromium(VI) species was studied in solution. The complexes (DPPMH)+HCrO 4 and (DPPMH)2Cr2O 7 are extracted for tracer and macro amounts of chromium(VI) respectively. The data have been utilized for the separation of chromium(VI) from base metal ions.  相似文献   

8.
Indigenously synthesized extractant, phenyl (octyl) phosphonic acid (POPA) in tri-n-butylphosphate (TBP) and dodecane, has been investigated for the separation of americium from trivalent lanthanides in nitric acid medium as well as diethylene triaminepentaacetic acid (DTPA) and lactic acid mixture (TALSPEAK medium). Various experimental parameters like concentration of DTPA, lactic acid, TBP, nitrate ions and pH of the aqueous feed solution have been optimized to obtain the highest separation factor between americium and europium. Bulk actinide–lanthanide separation reagent, tetra (ethylhexyl) diglycolamide (TEHDGA), was equilibrated with simulated solution of americium and lanthanides, equivalent in concentration to the reprocessing waste originating from PHWR spent fuel. DTPA/lactic acid mixture was used to strip the metal ions from the loaded organic phase and re-extracted into POPA in TBP/dodecane to evaluate the separation factor of individual lanthanides with respect to americium. Very good separation factors between americium and trivalent lanthanides were obtained.  相似文献   

9.
Solvent extraction was described for determining of the americium content in the liquid samples. Arylesters of imidodiphosphoric, imidothiodiphosphoric, imidodithiodiphosphoric acids and tetraphenylimidodithiodiphosphine are used as representatives of bidentate organophosphoric extractants. From the group of tridentate agents, pentaphenyldiimidotriphosphate, was used. The extraction properties of tetraphenyl imidodiphosphates and their sulphur analogues for trivalent americium in 0.1 mol L−1 HNO3 into toluene also in the presence of tri-n-octylphosphine oxide (TOPO) were investigated. The dependences of equilibrium ratios of the americium on analytical or equilibrium concentration of chelating agents, pH, initial concentration of nitric acid and initial concentration of TOPO were studied. The structures of the complexes in the organic phase were determined and the values of extraction constants were calculated. The extracted species were AmA3, AmA3 (HA), the addition of TOPO induced synergistic extraction of AmA3 TOPO. The utilization of sulphur analogues was marginal.  相似文献   

10.
Complex formation and liquid-liquid extraction were studied in systems containing Ga(III), azoderivative of resorcinol {4-(2-pyridylazo)resorcinol (PAR) or 4-(2-thiazolylazo)resorcinol (TAR)}, 2,3,5-triphenyltetrazolium chloride (TTC), water and chloroform. The optimum conditions w.r.t. pH, extraction time, concentration of ADR and concentration of TTC for the extraction of Ga(III) as an ion-associate complex were found.. The composition of the extracted complexes, (TT+)[Ga(PAR)2] (I), (TT+)[Ga(TAR)2] (II) or (TT+)2[Ga(OH)(TAR)2] (III), and the constants of association (β) between 2,3,5-triphenyltetrazolium cation (TT+) with corresponding anionic chelates were established by several methods. The constants of distribution (KD) and extraction (Kex) of the principal species I and III were determined as well. The apparent molar absorptivities of the chloroform extract at the optimum extraction-spectrophotometric conditions were ɛ′510=9.5×104 L mol−1 cm−1 (I) and ɛ′530=4.6×104 L mol−1 cm−1 (III). The validity of Beer’s law was checked and analytical characteristics that were calculated are reported herein.   相似文献   

11.
The mechanism of extraction has been investigated by partition, slope analysis and loading-ratio data. The results obtained give a picture of the mechanism of extraction of FeCl 4 ions in relation to the hydration and solvation of the compound extracted. The possible formula of the extracted species is (DPPM)3H3O+(H2O)n−FeCl 4 . In dilute aqueous hydrochloric acid systems the influence of the concentration of a number of salts with cations of different electrical potentials (Ze/r), on iron(III) extraction, has been studied. Splitting of the organic phases occurs at high acid and/or high salt concentrations. The phenomenon is explained on the basis of the variability of the hydration number. Investigations have been made to understand the parameters controlling the extraction of the metal and its is shown that the extraction offers a simple, fast and selective separation method of iron from solutions.  相似文献   

12.
Speciation analysis of Sb(III) and Sb(V) in a soil sample was performed through extraction and on-line isotope dilution concentration determination after a chromatographic separation. The total Sb concentration found in a through traffic contaminated soil sample was (4.17 μg g−1, 0.3 μg g−1 SD, n=6). It was determined using ICP-MS after soil digestion using the sodium peroxide sintering method. The optimized extraction procedure for speciation analysis was carried out using 100 mmol L−1 citric acid at pH 2.08 by applying an ultrasonic bath for 45 min at room temperature. The effects of citric acid concentration (0–500 mmol L−1), pH (1–6), and temperature (30–60°C) on inorganic antimony species distribution in the examined sample were studied and optimized. The separation of Sb(III) and Sb(V) was achieved using an anion exchange column (PRP-X100) and 10 mmol L−1 EDTA and 1 mmol L−1 phthalic acid at pH 4.5 as a mobile phase. The eluent from the HPLC was mixed with an enriched (94.2%) 123Sb spike solution that was pumped by a peristaltic pump with a constant flow rate (0.5 mL min−1) in a three-way valve. The blend passed directly to the Conikal nebulizer of the ICP-MS. By using the above extraction procedure and methodology, 43.2% Sb(V) (2.9% RSD, n=3) and 6.0% Sb(III) (1.3% RSD, n=3) of total Sb found in the sample could be detected. The detection limits achieved by the proposed method were 20 ng L−1 and 65 ng L−1 for Sb(V) and Sb(III), respectively. The precision, evaluated by using RSD with 100 ng L−1 calibration solutions, was 2.7% and 3.2% (n=6) for Sb(V) and Sb(III), respectively, in aqueous solutions.  相似文献   

13.
The extraction-chromatographic behaviour of copper, indium and thorium was investigated on a column with N-benzoyl-N-phenylhydroxylamine in chloroform. From the results the values of the extraction constanst of the metal chelates were calculated and found to be in good agreement with the published values. It is possible to calculate the optimum conditions for the separation of the different metals from known extraction constants. The separation of65Zn−64Cu;60Co−59Fe;60Co−64Cu−59Fe;238U−234Th(UX1) and232Th−233Pa in this system is reported. The described procedures were used for the preparation of carrier-free234Th(UX1) from uranyl nitrate and233Pa from irradiated thorium. Part II: J. Radional. Chem., 7 (1971) 41.  相似文献   

14.
The extraction behaviour of trace and macroamounts of chromium(VI) from different mineral acid solutions by 2-hexylpyridine in chloroform has been investigated. In the chloride system, the extracted species is apparently (HPyH+)2 (Cr2O7)2− or HPy+(HCrO 4 ) for macro and trace amounts of chromium(VI), respectively. Among the common anions chloride and sulphate have little effect on extraction up to 1M concentration, while in the case of nitrate there is a continuous decrease in the extraction with the increase of salt concentration in the aqueous phase. The effect of ascorbate, acetate, citrate, oxalate, thiosulphate, thiocyanate ions on the extraction from 1M HCl was also examined. Separation factors of several elements relative to chromium(VI) have been described and the separation of chromium(IV) from a large number of elements has been achieved.  相似文献   

15.
Separations research at the Rocky Flats Plant /RFP/ has found ways to significantly improve americium removal from nitric acid/7M/ waste streams generated by plutonium purification operations. Partial neutralization of the acid waste followed by solid supported liquid membranes /SLM/ are useful in transferring and concentrating americium from nitrate solutions. Specifically, DHDECMP /dihexyl-N, N-diethylcarbamoylmethylphosphonate/ supported on Accurel polypropylene hollow fibers assembled in modular form transfers >95% of the americium from high nitrate /6.9M/, low acid /0.1M/ feeds into 0.25M oxalic acid stripping solution. Maximum permeabilities were observed to be 0.001 cm sec–1, consistent with typical values for other systems. The feed:strip volume ratio shows an inverse relationship to the fraction of metal ion transferred. Cation exchangers may be used to concentrate americium from the strip solution. Furthermore, OØD/iB/CMPO /or CMPO/ /octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide/ has been tested in an extraction chromatography mode. Preliminary results show CMPO to be effective in removing americium if the feed is neutralized to 1.OM acidity and iron/III/ is complexed with 0.20M oxalic acid.  相似文献   

16.
The protonation of lactate has been studied in a variety of electrolyte solutions using microcalorimetry to reveal a distinct medium influence imposed on the thermochemistry of the equilibrium. The thermochemistry of lactate protonation, when studied directly in 1.0 mol⋅L−1 sodium lactate, agreed well with the studies performed in trifluoromethanesulfonate (triflate). This thermodynamic agreement suggests that the physical chemistry of lactate in the solutions applicable to the TALSPEAK process—a solvent extraction method for separating trivalent actinides from trivalent lanthanides within the scope of used nuclear fuel processing efforts—may be simulated in triflate solutions. Potentiometry, spectrophotometry and microcalorimetry have been subsequently used to study the thermodynamic features of neodymium and americium complexation by lactate using triflate as a strong background electrolyte. Three successive mononuclear lactate complexes were identified for Nd(III) and Am(III). The stability constants for neodymium, β 101=2.60±0.01, β 102=4.66±0.02 and β 103=5.6±0.1, and for americium, β 101=2.60±0.06, β 102=4.7±0.1 and β 103=6.2±0.2, were found to closely agree with the thermodynamic studies reported in sodium perchlorate solutions. Consequently, the thermodynamic medium effect, imposed on the TALSPEAK-related solution equilibria by the presence of strong background electrolytes such as NaClO4 and NaNO3, does not significantly impact the speciation in solution.  相似文献   

17.
Recently the use of the more unusual hexavalent oxidation state of americium has been receiving increased attention for the purpose of developing an efficient Am/Cm or Am/lanthanide separation system. We have already demonstrated the feasibility of performing this separation with 30% TBP in dodecane, and are now looking at different extractants to increase Am(VI) distribution ratios. Following on from this the extraction of bismuth oxidized americium from nitric acid solutions by dibutyl butyl phosphonate has been studied. The results of this study indicate that increasing the basicity of the extractant molecule has significantly improved the extraction efficiency.  相似文献   

18.
Extraction of lanthanide(III) nitrates of ceric subgroup was studied by pure tributylphosphate, 50% solution of trialkylmethylammonium nitrate in toluene and composite materials based on porous Teflon and mentioned extractans in the presence of 1–5 mol/dm3 of sodium nitrate in aqueous phase. Effect of additions of sodium sulfate and chloride to nitrate solutions on distribution parameters of lanthanides(III) was determined. The extraction process can be described with taking into account the formation of [Ln(NO3)3(S) j ] (j = 3, 4) in organic phase. The extraction constants were estimated. It was established, that accounting tributylphosphate concentration in the phase of composite, extraction constants and isotherm shape for systems based on tributylphosphate are identical within the error of determination. In the case of trialkylmethylammonium nitrate those for composite are little greater then for liquid extractant.  相似文献   

19.
The extraction behavior of nalidixic acid (HNA) in CH2Cl2 has been studied for various di- and trivalent metal ions such as Cu(II), Fe(II), Ni(II), Mn(II), Sb(II), Co(II), Sc(III), Y(III), Nd(III) and Eu(III) from aqueous buffer solutions of pH 1–7 with 0.1 mol dm−3 nalidixic acid in dichloromethane. Separation factors of Sc(III) from these metals has shown that its clean separation is possible at pH 3.4–4. The parameters affecting the extraction of Sc(III) were optimized. The composition of the extracted adduct was determined by slope analysis method that came out to be Sc(NA)3. Extraction of Sc(III) was studied in the presence of various cations and anions. Among the anions studied only fluoride, citrate and oxalate have significant interference whereas, Fe(III) has reduced the extraction to 53% that can be removed by using ascorbic acid as reducing agent. The proposed extraction system proved good stability up to six extraction-stripping stages for the extraction of Sc(III).  相似文献   

20.
Complex formation and liquid-liquid extraction were studied in systems containing indium(III), 4-(2-pyridylazo)resorcinol (PAR), tetrazolium salt (TZS), water and chloroform. Two different TZS were used: 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT). The optimum conditions for extraction of In(III) as a ternary complex, (TT+)[In(PAR)2] or (MTT+)[In(PAR)2], were found: pH, extraction time, concentration of PAR and concentration of TZS. The constants of extraction (Kex), constants of association (β), constants of distribution (KD) and recovery factors (R%) were determined. The apparent molar absorptivities in chloroform were calculated to be ɛ′520=6.6×104 L mol−1 cm−1 and ɛ′515=7.1×104 L mol−1 cm−1 for the systems with TTC (I) and MTT (II), respectively. Beer’s law was obeyed for In(III) concentrations up to 3.4 μg mL−1 in both the cases. The limits of detection (LOD=0.07 μg mL−1 I and LOD=0.12 μg mL−1 II), limits of quantification (LOQ=0.24 μg mL−1 I and LOQ=0.41 μg mL−1 II) and Sandell’s sensitivities (SS) were estimated as well.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号