首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient fluorescent Al(3+) receptor, N-(2-hydroxy-1-naphthalene)-N'-(2-(2-hydroxy-1-naphthalene)amino-ethyl)-ethane-1,2-diamine (L) has been synthesized by the condensation reaction between 2-hydroxy naphthaldehyde and diethylenetriamine. High selectivity and affinity of L towards Al(3+) in ethanol (EtOH) as well as in HEPES buffer at pH 7.4, makes it suitable to detect intracellular Al(3+) with fluorescence microscopy. Metal ions, viz. Li(+), Na(+), K(+), Mg(2+), Ca(2+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Ag(+), Cd(2+), Hg(2+) and Pb(2+) do not interfere. The lowest detection limit for Al(3+) is 3.0 × 10(-7) M and 1.0 × 10(-7) M in EtOH and HEPES buffer respectively.  相似文献   

2.
Chen C  Wang R  Guo L  Fu N  Dong H  Yuan Y 《Organic letters》2011,13(5):1162-1165
A novel squaraine-based chemosensor SQ-1 has been synthesized, and its sensing behavior toward various metal ions was investigated by UV-vis and fluorescence spectroscopies. In AcOH-H(2)O (40:60, v/v) solution, Hg(2+) ions coordinate with SQ-1 causing a deaggregation which induces a visual color and absorption spectral changes as well as strong fluorescence. In contrast, the addition of other metals (e.g., Pb(2+), Cd(2+), Cu(2+), Zn(2+), Al(3+), Ni(2+), Co(2+), Fe(3+), Ca(2+), K(+), Mg(2+), Na(+), and Ag(+)) does not induce these changes at all. Thus SQ-1 is a specific Hg(2+) sensing agent due to the inducing deaggregation of the dye molecule by Hg(2+).  相似文献   

3.
Development and applications of fluorescent indicators for Mg2+ and Zn2+   总被引:1,自引:0,他引:1  
In a study of the spectroscopic behavior of two Schiff base derivatives, salicylaldehyde salicylhydrazone (1) and salicylaldehyde benzoylhydrazone (2), Schiff base 1 has high selectivity for Zn(2+) ion not only in abiotic systems but also in living cells. The ion selectivity of 1 for Zn(2+) can be switched for Mg(2+) by swapping the solvent from ethanol-water to DMF (N,N-dimethylformamide)-water mixtures. Imine 2 is a good fluorescent probe for Zn(2+) in ethanol-water media. Many other ions tested, such as Li(+), Na(+), Al(3+), K(+), Ca(2+), Cr(3+), Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Ag(+), Cd(2+), Sn(2+), Ba(2+), Hg(2+), and Pb(2+), failed to induce any spectral change in various solvents. The selectivity mechanism of 1 and 2 for metal ions is based on a combinational effect of proton transfer (ESPT), C═N isomerization, and chelation-enhanced fluorescence (CHEF). The coordination modes of the complexes were investigated.  相似文献   

4.
Warmke H  Wiczk W  Ossowski T 《Talanta》2000,52(3):449-456
The influence of metal cations Li(+), Na(+), K(+), Cs(+), Mg(2+), Ca(2+), Sr(2+), Ba(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Pb(2+) and Al(3+) on the spectroscopic properties of the dansyl (1-dimethylaminonaphthalene-5-sulfonyl) group covalently linked to monoaza crown ethers 1-aza-15-crown-5 (1,4,7,10,-tetraoxa-13-azacyclopentadecane) (A15C5) and 1-aza-crown-6 (1,4,7,10,13-pentaoxa-16-azacyclooctadecane) (A18C6) was investigated by means of absorption and emission spectrophotometry. Interaction of the alkali metal ions with both fluoroionophores is weak, while alkaline earth metal ions interact strongly causing 50 and 85% quenching of dansyl fluorescence of N-(5-dimethylamine-1-naphthalenesulfonylo)-1,4,7,10,-tetraoxa-13-azacyclopentadecane (A15C5-Dns) and N-(5-dimethylamine-1-naphthalenesulfonylo)-1,4,7,10,13-pentaoxa-16-azacyclooctadecane (A18C6-Dns), respectively. The Cu(2+), Pb(2+) and Al(3+) cations interact very strongly with dansyl chromophore, causing a major change in absorption spectrum of the chromophore and forming non-fluorescent complexes. The Co(2+), Ni(2+), Zn(2+), Mg(2+) cations interact moderately with both fluoroionophores causing quenching of dansyl fluorescence by several percent only.  相似文献   

5.
A novel chemosensor based on unsymmetrical squaraine dye (USQ-1) for the selective detection of Hg(2+) in aqueous media is described. USQ-1 in combination with metal ions shows dual chromogenic and "turn-on" fluorogenic response selectivity toward Hg(2+) as compared to Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ba(2+), Al(3+), Cu(2+), Cd(2+), Mn(2+), Fe(3+), Ag(+), Pb(2+), Zn(2+), Ni(2+) and Co(2+) due to the Hg(2+)-induced deaggregation of the dye molecule. A recognition mechanism based on the binding mode is proposed based on the absorption and fluorescence changes, (1)H NMR titration experiments, ESI-MS study, and theoretical calculations.  相似文献   

6.
An efficient water soluble fluorescent Al(3+) receptor, 1-[[(2-furanylmethyl)imino]methyl]-2-naphthol (1-H) was synthesized and characterized by physico-chemical and spectroscopic tools along with single crystal X-ray crystallography. High selectivity and affinity of 1-H towards Al(3+) in HEPES buffer (DMSO/water: 1/100) of pH 7.4 at 25 °C showed it to be suitable for detection of intracellular Al(3+) by fluorescence microscopy. Metal ions, viz. alkali (Na(+), K(+)), alkaline earth (Mg(2+), Ca(2+)), and transition-metal ions (Ni(2+), Zn(2+), Cd(2+), Co(2+), Cu(2+), Fe(3+), Cr(3+/6+), Hg(2+)) and Pb(2+), Ag(+) did not interfere. The lowest detection limit for Al(3+) was calculated to be 6.03 × 10(-7) M in 100 mM HEPES buffer (DMSO/water: 1/100). Theoretical calculations have also been included in support of the configuration of the probe-aluminium complex.  相似文献   

7.
Bright FV  Poirier GE  Hieftje GM 《Talanta》1988,35(2):113-118
A fluorimetric ion sensor based on fiber optics has been developed that employs Rhodamine 6G hydrophobically and electrostatically "trapped" on a Nafion film. The sensor is based on the measurement of quenching or enhancement of the Rhodamine 6G fluorescence by various ions. It was found that ions such as Co(2+), Cr(3+), Fe(2+), Fe(3+), Cu(2+), Ni(2+) and NH(+)(4) rapidly quench the Rhodamine 6G fluorescence at an initial rate that depends on the concentration of the ion. This quenching is then readily reversed by the addition of "reverser" ions such as H(+), Li(+), Na(+), K(+), Ba(2+), Ca(2+), Mn(2+), Zn(2+) and Mg(2+). Again, the initial rate for the attainment of the original fluorescence was found to depend on the concentration of the reverser ion. Therefore, by monitoring the quenching directly the concentration of quencher ions can be determined. In addition, by loading the film with quencher and monitoring the initial rate of return towards the original baseline signal, it is possible to determine non-quenching ions.  相似文献   

8.
Dansyl-anthracene dyads 1 and 2 in CH(3)CN-H(2)O (7:3) selectively recognize Cu(2+) ions amongst alkali, alkaline earth and other heavy metal ions using both absorbance and fluorescence spectroscopy. In absorbance, the addition of Cu(2+) to the solution of dyads 1 or 2 results in appearance of broad absorption band from 200 nm to 725 nm for dyad 1 and from 200 nm to 520 nm for dyad 2. This is associated with color change from colorless to blue (for 1) and fluorescent green (for 2). This bathochromic shift of the spectrum could be assigned to internal charge transfer from sulfonamide nitrogen to anthracene moiety. In fluorescence, under similar conditions dyads 1 and 2 on addition of Cu(2+) selectively quench fluorescence due to dansyl moiety between 520-570 nm (for 1)/555-650 nm (for 2) with simultaneous fluorescence enhancement at 470 nm and 505 nm for dyads 1 and 2, respectively. Hence these dyads provide opportunity for ratiometric analysis of 1-50 μM Cu(2+). The other metal ions viz. Fe(3+), Co(2+), Ni(2+), Cd(2+), Zn(2+), Hg(2+), Ag(+), Pb(2+), Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ba(2+) do not interfere in the estimation of Cu(2+) except Cr(3+) in case of dyad 1. The coordination of dimethylamino group of dansyl unit with Cu(2+) causes quenching of fluorescence due to dansyl moiety between 520-600 nm and also restricts the photoinduced electron transfer from dimethylamino to anthracene moiety to release fluorescence between 450-510 nm. This simultaneous quenching and release of fluorescence respectively due to dansyl and anthracene moieties emulates into Cu(2+) induced ratiometric change.  相似文献   

9.
A poly(amine ester) dendrimer with naphthyl units (G1N6) has been synthesized as a fluorescent chemosensor for metal ions. We investigated the metal-ion recognition of G1N6 by adding each of Ag(+), Al(3+), Ba(2+), Ca(2+), Cd(2+), Co(2+), Cu(2+), Fe(3+), Mg(2+), Ni(2+), and Zn(2+) in acetonitrile solution. Large changes were observed in the fluorescence spectra of G1N6 upon the addition of Al(3+), Cu(2+), and Zn(2+).  相似文献   

10.
A rhodamine B derivative 4 containing a highly electron-rich S atom has been synthesized as a fluorescence turn-on chemodosimeter for Cu(2+). Following Cu(2+)-promoted ring-opening, redox and hydrolysis reactions, comparable amplifications of absorption and fluorescence signals were observed upon addition of Cu(2+); this suggests that chemodosimeter 4 effectively avoided the fluorescence quenching caused by the paramagnetic nature of Cu(2+). Importantly, 4 can selectively recognize Cu(2+) in aqueous media in the presence of other trace metal ions in organisms (such as Fe(3+), Fe(2+), Cu(+), Zn(2+), Cr(3+), Mn(2+), Co(2+), and Ni(2+)), abundant cellular cations (such as Na(+), K(+), Mg(2+), and Ca(2+)), and the prevalent toxic metal ions in the environment (such as Pb(2+) and Cd(2+)) with high sensitivity (detection limit < or =10 ppb) and a rapid response time (< or =1 min). Moreover, by virtue of the chemodosimeter as fluorescent probe for Cu(2+), confocal and two-photon microscopy experiments revealed a significant increase of intracellular Cu(2+) concentration and the subcellular distribution of Cu(2+), which was internalized into the living HeLa cells upon incubation in growth medium supplemented with 50 muM CuCl(2) for 20 h.  相似文献   

11.
A new monostyryl boron dipyrromethene derivative (MS1) appended with two triazole units indicates the presence of Hg(2+) among other metal ions with high selectivity by color change and red emission. Upon Hg(2+) binding, the absorption band of MS1 is blue-shifted by 29 nm due to the inhibition of the intramolecular charge transfer from the nitrogen to the BODIPY, resulting in a color change from blue to purple. Significant fluorescence enhancement is observed with MS1 in the presence of Hg(2+); the metal ions Ag(+), Ca(2+), Cd(2+), Co(2+), Cu(2+), Fe(2+), Fe(3+), K(+), Mg(2+), Mn(2+), Ni(2+), Pb(2+), and Zn(2+) cause only minor changes in the fluorescence of the system. The apparent association constant (K(a)) of Hg(2+) binding in MS1 is found to be 1.864 × 10(5) M(-1). In addition, fluorescence microscopy experiments show that MS1 can be used as a fluorescent probe for detecting Hg(2+) in living cells.  相似文献   

12.
2-((Naphthalen-6-yl)methylthio)ethanol (HL) was prepared by one pot synthesis using 2-mercaptoethanol and 2-bromomethylnaphthalene. It was found to be a highly selective fluorescent sensor for Al(3+) in the physiological pH (pH 7.0-8.0). It could sense Al(3+) bound to cells through fluorescence microscopy. Metal ions like Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Ag(+), Cd(2+), Hg(2+), Cr(3+) and Pb(2+) did not interfere. No interference was also observed with anions like Cl(-), Br(-), F(-), SO(4)(2-), NO(3)(-), CO(3)(2-), HPO(4)(2-) and SCN(-). Experimentally observed structural and spectroscopic features of HL and its Al(3+) complex have been substantiated by computational calculations using density functional theory (DFT) and time dependent density functional theory (TDDFT).  相似文献   

13.
In this work photoluminescent properties of highly Cu(2+) selective organic fluoroionophore, semicarbazone derivative; bis(naphtho[2,1-b]furan-2-yl)methanone semicarbazone (BNF) was investigated in different solvents (dichloromethane, tetrahydrofuran, toluene and ethanol) and in polymer matrices of polyvinylchloride (PVC) and ethyl cellulose (EC) by absorption and emission spectrometry. The BNF derivative displayed enhanced fluorescence emission quantum yield, Q(f)=6.1 x 10(-2) and molar extinction coefficient, epsilon=29,000+/-65 cm(-1)M(-1) in immobilized PVC matrix, compared to 2.6 x 10(-3) and 24,573+/-115 in ethanol solution. The offered sensor exhibited remarkable fluorescence intensity quenching upon exposure to Cu(2+) ions at pH 4.0 in the concentration range of 1.0 x 10(-9) to 3.0 x 10(-4)M [Cu(2+)] while the effects of the responding ions (Ca(2+), Hg(+), Pb(2+), Al(3+), Cr(3+), Mn(2+), Mg(2+), Sn(2+), Cd(2+), Co(2+) and Ni(2+)) were less pronounced.  相似文献   

14.
1-((E)-(2-((2-nitrobenzyl)(2-((E)-(2-hydroxynaphthalen-1-yl)methyleneamino)ethyl)amino)ethylimino)methyl)naphthalen-2-ol (H(2)L), The new compound featuring two naphthalene units was synthesized and characterized. We find that H(2)L has high selectivity and sensitivity to detect Zn(2+) ion over other metal ions such as Na(+), Ag(+), Cd(2+), Co(2+), Cr(3+), Cu(2+), Hg(2+), Mn(2+), Ni(2+), Fe(3+), and the sensitivity is about 10(-7)M. The fluorescent changes of H(2)L upon the addition of cations Zn(2+) and triethylamine is utilized as an AND logic gate at the molecular level, using Zn(2+) and triethylamine as chemical inputs and the fluorescence intensity signal as output.  相似文献   

15.
A weakly fluorescent thiosemicabazone (L(1)H) was found to be a selective optical and "turn-on" fluorescent chemodosimeter for Cu(2+) ion in aqueous medium. A significant fluorescence enhancement along with change in color was only observed for Cu(2+) ion; among the other tested metal ions (viz. Na(+), K(+), Mg(2+), Ca(2+), Cr(3+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), Ag(+), Ni(2+), Co(2+), Fe(3+) and Mn(2+)). The Cu(2+) selectivity resulted from an oxidative cyclization of the weak fluorescent L(1)H into highly fluorescent rigid 4,5-dihydro-5,5-dimethyl-4-(naphthalen-5-yl)-1,2,4-triazole-3-thione (L(2)). The signaling mechanism has been confirmed by independent synthesis with detail characterization of L(2).  相似文献   

16.
Singhal GK  Tandon KN 《Talanta》1968,15(7):707-710
The use of hematoxylin and hematein as metallochromic indicators in direct EDTA titration of Zr(4+), Th(4+), Bi(3+), VO(+), Ga(3+), In(3+), Al(3+), Pb(+), Zn(2+), Mn(2+), Cd(2+), Cu(2+), Ni(2+), Co(2+), Mg(2+), and a few rare earths is described. Aluminium is titrated directly in presence of acetate buffer, lactic or glycoliic acid being used as auxiliary complexing agent. Mixtures of two metal ions can be titrated if one is Bi(3+) and the other Al(3+), Pb(2+), Zn(2+), Cu(2+), Cd(2+), La(3+), Ce(3+), Pr(3+), Nd(3+), Sm(3+), Gd(3+) or Er(3+). Aluminium alloys can be analysed via EDTA titrations, with these indicators.  相似文献   

17.
Kaur P  Sareen D  Singh K 《Talanta》2011,83(5):1695-1700
Although the high sensitivity, high selectivity and fast response make emission (fluorescence) based technique as one of the most promising tool for developing the chemosensors for metal ions, the past few years have witnessed a demand for the absorption based chemosensors for paramagnetic heavy metal ions, especially Cu(2+). Being paramagnetic, Cu(2+) leads to the low signal outputs ("turn-off") caused by decreased emission which may sometimes give false positive response, rendering the emission based technique less reliable for analytical purposes. Herein, we report synthesis and characterization of a hetarylazo derivative, characterized by a strong charge-transfer band which gets attenuated convincingly in the presence of Cu(2+) leading to distinct naked-eye color change (yellow to purple), and to a lesser extent in the presence of Cd(2+), Zn(2+), Co(2+), Pb(2+), Fe(2+), Ni(2+), Fe(3+) and Hg(2+) for which the naked eye sensitivity was comparatively (w.r.t. Cu(2+)) much less. No response was observed for the other metal ions including Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ba(2+), Mn(2+), Ag(+), Zn(2+), Cd(2+), Pb(2+), and lanthanides Ce(3+), La(3+), Pr(3+), Eu(3+), Nd(3+), Lu(3+), Yb(3+), Tb(3+), Sm(3+), Gd(3+). The proposed sensing mechanism has been ascribed to the stabilization of LUMO after complexation with Cu(2+) and a 1:1 stoichiometry has been deduced.  相似文献   

18.
Zhang JR  Huang WT  Xie WY  Wen T  Luo HQ  Li NB 《The Analyst》2012,137(14):3300-3305
Coupling T base with Hg(2+) to form stable T-Hg(2+)-T complexes represents a new direction in detection of Hg(2+). Here a graphene oxide (GO)-based fluorescence Hg(2+) analysis using DNA duplexes of poly(dT) that allows rapid, sensitive, and selective detection is first reported. The Hg(2+)-induced T(15)-(Hg(2+))(n)-T(15) duplexes make T(15) unable to hybridize with its complementary A(15) labelled with 6'-carboxyfluorescein (FAM-A(15)), which has low fluorescence in the presence of GO. On the contrary, when T(15) hybridizes with FAM-A(15) to form double-stranded DNA because of the absence of Hg(2+), the fluorescence largely remains in the presence of GO. A linear range from 10 nM to 2.0 μM (R(2) = 0.9963) and a detection limit of 0.5 nM for Hg(2+) were obtained under optimal experimental conditions. Other metal ions, such as Al(3+), Ag(+), Ca(2+), Ba(2+), Mg(2+), Zn(2+), Mn(2+), Co(2+), Pb(2+), Ni(2+), Cu(2+), Cd(2+), Cr(3+), Fe(2+), and Fe(3+), had no significant effect on Hg(2+) detection. Moreover, the sensing system was used for the determination of Hg(2+) in river water samples with satisfactory results.  相似文献   

19.
Two tris(2-aminoethyl)amine (tren) based tripodal amide fluoroionophores, 1 and 2, functionalized with quinoline (chelating fluorophore) and naphthalene (non-chelating fluorophore) respectively, are synthesized in good yields. Fluoroionophore 1 shows a selective UV-Vis spectral shift in the case of Hg(2+) in acetonitrile among different metal ions like Li(+), Na(+), Ca(2+), Mg(2+), Cr(2+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), and Ag(+). On the other hand, fluoroionophore 2 shows no selectivity towards any of the above metal ions in the UV-Vis study. Furthermore, 1 shows a selective chelation induced fluorescence enhancement in the presence of Hg(2+) whereas 2 shows the enhancement of fluorescence with most of the metal ions via a photoinduced charge transfer mechanism. The naked eye detection of Hg(2+) in an acetonitrile solution of 1 shows a greenish fluorescence upon UV light irradiation. The isolated Hg(2+) complex of 1, 3, shows a similar UV-Vis and fluorescence spectral output as observed from in situ spectroscopic studies of 1 in the presence of Hg(2+). Infra-red (IR) and (1)H- NMR studies also reveal the interaction of Hg(2+) with the quinoline nitrogen atoms as well as with the amide functionality.  相似文献   

20.
Du P  Lippard SJ 《Inorganic chemistry》2010,49(23):10753-10755
We describe ZRL1, a turn-on colorimetric and red fluorescent zinc ion sensor. The Zn(2+)-promoted ring opening of the rhodamine spirolactam ring in ZRL1 evokes a 220-fold fluorescence turn-on response. In aqueous media, ZRL1 turn-on luminescence is highly selective for Zn(2+) ions, with no significant response to other competitive cations, including Na(+), K(+), Ca(2+), Mg(2+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Cd(2+), or Hg(2+). In addition to these characteristics, preliminary results indicate that ZRL1 can be delivered to living cells and can be used to monitor changes in intracellular Zn(2+) levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号