首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One-photon mass-analyzed threshold ionization (MATI) spectrum of trans-C(2)H(2)Cl(2) was obtained by using vacuum ultraviolet radiation generated by four-wave mixing in Kr. The ionization energy determined from the position of the 0-0 band in the spectrum was 9.6306 +/- 0.0006 eV. Ten vibrational fundamentals for the cation were identified. The spectrum also displayed abundant overtones and combinations, most of which could be assigned adequately by comparing with the quantum chemical results. It was found that channel interaction was not important for this system. The equilibrium geometry of the cation was estimated through the Franck-Condon fit.  相似文献   

2.
Adiabatic ionization energies of dimethyl sulfide (DMS) and ethylene sulfide (thiirane) are both accurately and precisely determined to be 8.6903 +/- 0.0009 and 9.0600 +/- 0.0009 eV, respectively, by vacuum-UV mass-analyzed threshold ionization (MATI) spectroscopy. Also reported are vibrational frequencies of DMS and thiirane monocations. Simulations using a Franck-Condon analysis based on ab initio molecular structures reproduce the experimental findings quite well. Detailed vibrational structures are discussed with the aid of ab initio calculations. Ionization-induced structural changes provide the information about the role of the sulfur nonbonding orbital in the geometrical layout of the title compounds.  相似文献   

3.
One-photon mass-analyzed threshold ionization (MATI) spectrum of CH2BrI was obtained using coherent vacuum-ultraviolet radiation generated by four-wave difference-frequency mixing in Kr. Unlike CH2ClI investigated previously, a very extensive bending (Br-C-I) progression was observed. Vibrational frequencies of CH2BrI+ were measured from the spectra and the vibrational assignments were made by utilizing frequencies calculated by the density-functional-theory (DFT) method using relativistic effective core potentials with and without the spin-orbit terms. A noticeable spin-orbit effect on the vibrational frequencies was observed from the DFT calculations, even though its influence was not so dramatic as in CH2ClI+. A simple explanation based on the bonding characteristics of the molecular orbitals involved in the ionization is presented to account for the above differences between the MATI spectra of CH2BrI and CH2ClI. The 0-0 band of the CH2BrI spectrum could be identified through the use of combined data from calculations and experiments. The adiabatic ionization energy determined from the position of this band was 9.5944+/-0.0006 eV, which was significantly smaller than the vertical ionization energy reported previously.  相似文献   

4.
One-photon mass-analyzed threshold ionization (MATI) spectrum of hexafluorobenzene was obtained by using vacuum ultraviolet radiation generated by four-wave difference frequency mixing in Kr. The ionization energy of hexafluorobenzene determined from the position of the 0-0 band was 9.9108+/-0.0006 eV. To aid the spectral analysis, the Jahn-Teller coupling parameters for four e(2g) modes of C(6)F(6) (+) in the ground electronic state were calculated from the topographical data of the potential energy surface obtained at the density functional theory (DFT) level. These were used in the initial calculation of the energies of the Jahn-Teller states and upgraded through the multimode fit to the experimental data. Excellent agreement between the experimental and calculated frequencies was achieved. The vibrations which are not linear Jahn-Teller active were observed and could be assigned by referring to the frequencies obtained at the DFT level.  相似文献   

5.
Photodissociation of CH(3)I(+) in the ground vibronic state generated by mass-analyzed threshold ionization resulted in a superb spectrum for the first excited electronic state (A (2)A(1)) with hardly any spurious peak. Rotational structure in the spectrum could be resolved by using a single mode laser. This structure for one vibronic band, 2(1)3(1)6(1), was analyzed with the assumption of Hund's case (a) scheme both in the ground and excited electronic states.  相似文献   

6.
A high-quality mass-analyzed threshold ionization (MATI) spectrum of 2-chloropropene, 2-C3H5Cl, is reported. Its ionization energy determined for the first time from the 0-0 band position was 9.5395+/-0.0006 eV. Almost all the peaks in the MATI spectrum could be vibrationally assigned utilizing the frequencies calculated at the B3LYP6-311++G(3df,3pd) level and the Franck-Condon factors calculated with the molecular parameters obtained at the same level. In particular, the observed methyl torsional progression could be reproduced very well through quantum-mechanical calculations using the molecular parameters obtained at this level. Dramatic lowering of the torsional barrier inferred from the experimental data was entirely compatible with the B3LYP6-311++G(3df,3pd) results. The torsional barrier and the internal rotational constant determined by fits to six torsional peaks were 53.6 and 5.20 cm(-1), respectively. A brief discussion at the level of molecular orbital is presented to account for the dramatic lowering of the torsional barrier upon ionization.  相似文献   

7.
The first results are presented of a new experiment designed both to generate and characterize spectroscopically individual isomers of transition-metal cluster cations. As a proof of concept the one-photon mass-analyzed threshold ionization (MATI) spectrum of V3 has been recorded in the region of 44,000-45,000 cm-1. This study extends the range of a previous zero-kinetic-energy (ZEKE) photoelectron study of Yang et al. [Chem. Phys. Lett. 231, 177 (1994)] with which the current results are compared. The MATI spectra reported here exhibit surprisingly high resolution (0.2 cm-1) for this technique despite the use of large discrimination and extraction fields. Analysis of the rotational profile of the origin band allows assignment of the V3 ground state as and the V3+ ground state as , both with D3h geometry, in agreement with the density-functional theory study of the V3 ZEKE spectrum by Calaminici et al. [J. Chem. Phys. 114, 4036 (2001)]. There is also some evidence in the spectrum of transitions to the low-lying excited state of the ion. The vibrational structure observed in the MATI spectrum is, however, significantly different to and less extensive than that predicted in the density-functional theory study. Possible reasons for the discrepancies are discussed and an alternative assignment is proposed which results in revised values for the vibrational wave numbers of both the neutral and ionic states. These studies demonstrate the efficient generation of cluster ions in known structural (isomeric) forms and pave the way for the study of cluster reactivity as a function of geometrical structure.  相似文献   

8.
One-photon mass-analyzed threshold ionization (MATI) spectra for the X (2)E(3/2) states of CH(3)I(+) and CD(3)I(+) were measured using vacuum ultraviolet radiation generated by four-wave mixing in Kr. Spin-orbit density functional theory calculations at the B3LYP/aug-cc-pVTZ level and spin-orbit/Jahn-Teller calculations were made to aid vibrational assignment. Each vibrational band consisted of several peaks due to different DeltaK transitions, which could be assigned by using molecular parameters determined in the previous high resolution photodissociation spectroscopic study. Possibility of generating mass-selected, vibronically selected and K-selected ion beam with decent intensity by one-photon MATI was demonstrated. The ionization energies to the X (2)E(3/2) states of CH(3)I(+) and CD(3)I(+) corrected for the rotational contribution were 9.5386+/-0.0006 and 9.5415+/-0.0006 eV, respectively.  相似文献   

9.
One-photon mass-analyzed threshold ionization spectrum of 1,3,5-trifluorobenzene was obtained by using vacuum ultraviolet radiation generated by four-wave difference frequency mixing in Kr. The Jahn-Teller parameters for the e' modes (nu(8)-nu(14)) of 1,3,5-C(6)H(3)F(3)(+) in the ground electronic state needed for spectral analysis were taken from the density functional theory results initially and were upgraded through fits to the experimental results. Excellent agreement was achieved between the experimental and calculated Jahn-Teller energy levels. Assignments of the Jahn-Teller inactive modes were accomplished by referring to the calculated frequencies and the selection rule. The ionization energy of 1,3,5-trifluorobenzene determined from the position of the 0-0 band was 9.6359+/-0.0006 eV.  相似文献   

10.
11.
A new technique [mass-analyzed threshold ionization (MATI)-photodissociation yield spectroscopy] to probe bound excited states of a cation was developed, which measures photodissociation yield of the cation generated by mass-analyzed threshold ionization. A vibrational spectrum of vinyl bromide cation in the (~)B state was obtained using this technique. Optical resolution in the low vibrational energy range of the spectrum was far better than in conventional MATI spectra. The origin of the (~)B state was found at 2.2578+/-0.0003 eV above the first ionization onset. Almost complete vibrational assignment was possible for peaks appearing in the spectrum. Analysis of time-of-flight profiles of C(2)H(3) (+) product ion obtained with different laser polarization angles suggested that photoexcited vinyl bromide cation remained in the (~)B state for several hundred picoseconds prior to internal conversion to the ground state and dissociation therein.  相似文献   

12.
The structural stability of acetohydrazide CH(3)-CO-NH-NH(2) was investigated by DFT-B3LYP and ab initio MP2 calculations with 6-311+G** basis set. The C-N rotational barrier in the molecule was calculated to be about 26 kcal/mol that suggested the planar sp(2) nature of the nitrogen atom of the central NH moiety. The N atom of the terminal NH(2) group was predicted to highly prefer the pyramidal sp(3) structure with an inversion barrier of about 7-8 kcal/mol. The molecule was predicted to have a trans-syn (N-H bond is trans with respect to CO bond and NH(2) moiety is syn to C-N bond) conformation as the lowest energy structure. The vibrational frequencies were computed at B3LYP level of theory and normal coordinate calculations were carried out for the trans-syn acetohydrazide. Complete vibrational assignments were made on the basis of normal coordinate analyses and experimental infrared and Raman data.  相似文献   

13.
Anhydrous potassium pelargonate (KC9) undergoes four thermal transitions from room temperature to 450 degrees C. A normal mode analysis was made for the molecule in phase I at room temperature and the molecule was considered to have an all-trains conformation. With increasing temperature, partial melting of the alkyl chains occurred in phase II and complete melting was observed in phase III, as confirmed by vibrational spectra. In addition, orientational disorder of the carboxylate groups was suggested in phase II. This transition behavior of potassium pelargonate was compared with the behavior of nonane and pelargonic acid.  相似文献   

14.
The infrared spectrum of the ionic cluster I(H2O) was recorded from 3170 to 3800 cm−1 by vibrational predissociation spectroscopy. A strong multiplet observed at 3415 cm−1 and a narrow band at 3710 cm−1 were assigned as a hydrogen-bonded OH stretch and free OH stretch respectively, indicating that H2O forms a single hydrogen bond with the iodide anion. Ab initio vibrational frequencies and intensities were computed at the second-order Møller-Plesset (MP2) level for the minimum energy configuration, a nearly linear hydrogen-bonded isomer, and for a low-lying saddlepoint, a symmetric C2v bridged isomer. The spectrum predicted for the hydrogen-bonded isomer agreed well with experiment.  相似文献   

15.
Conclusions A conformational equilibrium has been observed in (CH3)2CClNO, and it has been shown that the cisCl and trans conformers are present in solutions and in the gas phase, the more stable conformer being the cisCl. In n-C6H14, the energy difference amounts to 1.22 kcal/mole.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 7, pp. 1538–1544, July, 1989.  相似文献   

16.
(CH3)4NSbCl6 and [(CH3)4N]2SiF6 are face-centred cubic compounds at ambient temperature with a = 11.548 and 11.172 A, respectively. The vibrational spectra of these two compounds are discussed in relation to their crystal structure and other compounds containing (CH3)4N+ ions. The assignment of the observed bands is discussed. The Raman and infrared spectra of [(CH3)4N]2SiF6 show that the cations and anions are not distorted inside the crystals and are weakly hydrogen-bonded to each other. The infrared spectrum of (CH3)4NSbCl6 confirms a cubic structure for this compound at ambient temperature, in which cations are in octahedral environments and can be interpreted as being disordered groups. No evidence could be found for the existence of hydrogen bonding between cations and anions in this compound. The phase transition of (CH3)4NSbCI6 is studied by means of Raman spectroscopy. It is believed to be governed by the reorientational motions of tetramethylammonium cations and may be classified as an 'order-disorder' type.  相似文献   

17.
Restricted-spin coupled-cluster single-double plus perturbative triple excitation {RCCSD(T)} potential energy functions (PEFs) of the X(2)B2 state of ScO2 and the 1A1 state of ScO2(-) were computed, employing the augmented correlation-consistent polarized-weighted core-valence quadruple-zeta (aug-cc-pwCVQZ) basis set for Sc and augmented correlation-consistent polarized valence quadruple-zeta (aug-cc-pVQZ) basis set for O, and with the outer core Sc 3s(2)3p(6) electrons being explicitly correlated. Franck-Condon factors, which include allowance for Duschinsky rotation and anharmonicity, were calculated using the computed RCCSD(T) PEFs, and were used to simulate the first photodetachment band of ScO2(-). The simulated spectrum matches well with the corresponding experimental 355 nm photodetachment spectrum of Wu and Wang, J Phys Chem A 1998, 102, 9129, confirming the assignment of the photodetachment spectrum and the reliability of the RCCSD(T) PEFs used. Further calculations on low-lying electronic states of ScO2 gave adiabatic relative electronic energies (T(e)'s) of, and vertical excitation energies (T(v)'s) to, the 2A1, 2B1, and 2A2 states of ScO2 (from the X(2)B2 state of ScO2), as well as electron affinities (EAs) and vertical detachment energies (VDEs) to these neutral states from the 1A1 state of ScO2(-).  相似文献   

18.
The infrared spectra of CH3Cl + H2O isolated in solid neon at low temperature have been investigated. High concentration studies of water (0.01%-4%) and subsequent annealing lead to the formation of the ternary CH3Cl:(H2O)2 complex. Detailed vibrational assignments were made on the observed spectra of water and deuterated water engaged in the complex. In parallel, structural, energetic, and vibrational properties of the complex have been studied at the second-order M?ller-Plesset perturbation theory using several basis sets. Anaharmonic correction to the vibrational frequencies has been done with the standard second-order perturbation approach. It was shown that the ground state of the complex has a cyclic form for which the nonadditive three-body contribution was found to be around 10% of the interaction energy.  相似文献   

19.
A study of the reaction initiated by the thermal decomposition of di-t-butyl peroxide (DTBP) in the presence of (CH3)2C?CH2 (B) at 391–444 K has yielded kinetic data on a number of reactions involving CH3 (M·), (CH3)2CCH2CH3 (MB·) and (CH3)2?CH2C(CH3)2CH2CH3 (MBB·) radicals. The cross-combination ratio for M· and MB· radicals, rate constants for the addition to B of M· and MB· radicals relative to those for their recombination reactions, and rate constants for the decomposition of DTBP, have been determined. The values are, respectively, where θ = RT ln 10 and the units are dm3/2 mol?1/2 s?1/2 for k2/k and k9/k, s?1 for k0, and kJ mol?1 for E. Various disproportionation-combination ratios involving M·, MB·, and MBB· radicals have been evaluated. The values obtained are: Δ1(M·, MB·) = 0.79 ± 0.35, Δ1(MB·, MB·) = 3.0 ± 1.0, Δ1(MBB·, MB·) = 0.7 ± 0.4, Δ1(M·, MBB·) = 4.1 ± 1.0, Δ1(MB·, MBB·) = 6.2 ± 1.4, and Δ1(MBB·, MBB·) = 3.9 ± 2.3, where Δ1 refers to H-abstraction from the CH3 group adjacent to the center of the second radical, yielding a 1-olefin. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
We present an ab initio study of the effect of spin-orbit coupling on the dynamical properties of the Tl(0001) surface as well as on the electron-phonon interaction at the surface. The calculations based on density-functional theory were carried out using a linear response approach and a mixed-basis pseudopotential method. It is shown that the spin-orbit effects on the phonon spectrum and the electron-phonon interaction at the Fermi level of the surface are weak but conspire to a reduction in the electron-phonon coupling strength by 16%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号