首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Twenty-three density functional theory (DFT) methods, including the second- and the third-generation functionals, are tested in conjunction with two basis sets (LANL2DZ and SDD) for studying the properties of neutral and ionic silver clusters. We find that DFT methods incorporating the uniform electron gas limit in the correlation functional, namely, those with Perdew's correlation functionals (PW91, PBE, P86, and TPSS), Becke's B95, and the Van Voorhis-Scuseria functional VSXC, generally perform better than the other group of functionals, e.g., those incorporating the LYP correlation functional and variations of the B97 functional. Strikingly, these two groups of functionals can produce qualitatively different results for the Ag3 and Ag4 clusters. The energetic properties and vibrational frequencies of Ag(n) are also evaluated by the different functionals. The present study shows that the choice of DFT methods for heavy metals may be critical. It is found that the exact-exchange-incorporated PBE functional (PBE1PBE) is among the best for predicting the range of properties.  相似文献   

2.
The performance of a wide variety of DFT exchange-correlation functionals for a number of late-transition-metal reaction profiles has been considered. Benchmark ab-initio reference data for the prototype reactions Pd + H2, Pd + CH4, Pd + C2H6 (both C-C and C-H activation), and Pd + CH3Cl are presented, while ab-initio data of lesser quality were obtained for the catalytic hydrogenation of acetone and for the low-oxidation-state and high-oxidation-state mechanisms of the Heck reaction. "Kinetics" functionals such as mPW1K, PWB6K, BB1K, and BMK clearly perform more poorly for late-transition-metal reactions than for main-group reactions, as well as compared to general-purpose functionals. There is no single "best functional" for late-transition-metal reactions, but rather a cluster of several functionals (PBE0, B1B95, PW6B95, and TPSS25B95) that perform about equally well; if main-group thermochemical performance is additionally considered, then B1B95 and PW6B95 emerge as the best performers. TPSS25B95 and TPSS33B95 offer attractive performance compromises if weak interactions and main-group barrier heights, respectively, are also important. In the ab-initio calculations, basis set superposition errors (BSSE) can be greatly reduced by ensuring that the metal spd shell has sufficient radial flexibility in the high-exponent range. Optimal HF percentages in hybrid functionals depend on the class of systems considered, increasing from anions to neutrals to cations to main-group barrier heights; transition-metal barrier heights represent an intermediate situation. The use of meta-GGA correlation functionals appears to be quite beneficial.  相似文献   

3.
In the present study, Pt4(CH)n (1 ≤ n ≤ 7) and Pt4(benzene)2 metalorganic complexes have been investigated by performing density functional theory within spin polarized local density approximation, generalized gradient approximation and hybrid exchange correlation functionals in terms of the geometric properties, stability and energetics, electronic properties and chemical reactivity indexes. Locally stable isomers are distinguished from transition states by vibrational frequency analysis. Our calculations indicate that Pt4(CH)4 and Pt4benzene metal hydrocarbon complexes are the most stable structures among the studied species.  相似文献   

4.
Vapor liquid equilibria (VLE) and condensed phase properties of carbon dioxide and sulfur dioxide are calculated using first principles Monte Carlo (FPMC) simulations to assess the performance of several density functionals, notably PBE‐D3, BLYP‐D3, PBE0‐D3, M062X‐D3, and rVV10. GGA functionals were used to compute complete vapor liquid coexistence curves (VLCCs) to estimate critical properties, while the hybrid and nonlocal van der Waals functionals were used only for computing density at a single state point due to the high computational cost. Our results show that the BLYP‐D3 functional performs well in predicting VLE properties for both molecules when compared with other functionals. In the liquid phase, pair correlation functions reveal that there is not a significant difference in the location of the peak for the first solvation shell while the peak heights are different for different functionals. Overall, the BLYP‐D3 functional is a good choice for modeling VLE of acidic gases with significant environmental implications such as CO2 and SO2. © 2017 Wiley Periodicals, Inc.  相似文献   

5.
Stimulated by the recent observation of pi-pi interactions between C60 and corannulene subunits in a molecular tweezer arrangement (J Am Chem Soc 2007, 129, 3842), a density functional theory study was performed to analyze the electronic structure and properties of various noncovalent corannulene complexes. The theoretical approach is first applied to corannulene complexes with a series of benchmark molecules (CH4, NH3, and H2O) using several new-generation density functionals. The performance of nine density functionals, illustrated by computing binding energies of the corannulene complexes, demonstrates that Zhao and Truhlar's MPWB1K and M05-2X functionals provide energies similar to that obtained at the SCS-MP2 level. In contrast, most of the other popular density functionals fail to describe this noncovalent interaction or yield purely repulsive interactions. Further investigations with the M05-2X functional show that the binding energy of C60 with corannulene subunits in the relaxed molecular receptor clip geometry is -20.67 kcal/mol. The results of this calculation further support the experimental interpretation of pure pi-pi interactions between a convex fullerene and the concave surfaces of two corannulene subunits.  相似文献   

6.
7.
The reactions of CH(3)OH with the HO(2) and CH(3) radicals are important in the combustion of methanol and are prototypes for reactions of heavier alcohols in biofuels. The reaction energies and barrier heights for these reaction systems are computed with CCSD(T) theory extrapolated to the complete basis set limit using correlation-consistent basis sets, both augmented and unaugmented, and further refined by including a fully coupled treatment of the connected triple excitations, a second-order perturbative treatment of quadruple excitations (by CCSDT(2)(Q)), core-valence corrections, and scalar relativistic effects. It is shown that the M08-HX and M08-SO hybrid meta-GGA density functionals can achieve sub-kcal mol(-1) agreement with the high-level ab initio results, identifying these functionals as important potential candidates for direct dynamics studies on the rates of these and homologous reaction systems.  相似文献   

8.
Molecular calculations were carried out with four different methodologies to study the CH 4- nH 2O complex, for n = 1-21. The HF and MP2 methods used considered the O atom with pseudopotential to freeze the 1s shell. The other methodologies applied the Bhandhlyp and B3lyp exchange and correlation functionals. The optimized CH 4- nH 2O structures are reported, specifying the number and type of H 2O subunits (triangle, square, pentagon, etc.) that comprised the nH 2O counterpart cluster or cage, that interacted with the CH 4 molecule, and, in the latter case, that provided its confinement. Results are focused to understand the stability of the CH 4- nH 2O complex. The quality of the electron correlation effect, as well as the size of the nH 2O cage to confine the guest molecule, and the number and type of H 2O subunits comprising the nH 2O cluster or cage are the most important factors to provide the stability of the complex and also dictate the particular n value at which the CH 4 molecule confinement occurs. This number was 14 for the HF, Bhandhlyp, and B3Lyp methods and 16 for the MP2 method. The reported hydrate structures for n < 20 could be predictive for future experiments.  相似文献   

9.
The recently proposed new family of "double-hybrid" density functionals [Grimme, S. J. Chem. Phys. 2006, 124, 34108] replaces a fraction of the semi-local correlation energy by a non-local correlation energy expression that employs the Kohn-Sham orbitals in second-order many-body perturbation theory. These functionals have provided results of high accuracy over a wide range of properties but fail to accurately describe long-range van der Waals interactions. In this work, a distance-dependent scaling factor for the non-local correlation energy is introduced to address this problem, and two new double-hybrid density functionals are proposed. The new functionals are optimized with the finite cc-pVTZ basis on training sets of atomization energies and intermolecular interaction energies. They are compared against (scaled) second-order M?ller-Plesset perturbation theories and popular density functionals including the hybrid-GGA functional B3-LYP and the first double-hybrid functional (B2-PLYP). Tests are performed on an extensive set including reaction energies, barrier heights, weakly interacting complexes, transition-metal systems, molecular geometries, and harmonic vibrational frequencies. Within the cc-pVTZ atomic orbital basis, we have demonstrated the ability to find a parametrization scheme which is simultaneously able to describe thermochemistry and weakly bound systems with a satisfactory degree of accuracy.  相似文献   

10.
The self-interaction error (SIE) plays a central role in density functional theory (DFT) when carried out with approximate exchange-correlation functionals. Its origin, properties, and consequences for the development of standard DFT to a method that can correctly describe multi-reference electron systems by treating dynamic and non-dynamic electron correlation on an equal footing, is discussed. In this connection, the seminal work of Colle and Salvetti on wave function-based correlation functionals that do no longer suffer from a SIE is essential. It is described how the Colle–Salvetti correlation functional is an anchor point for the derivation of a functional multi-reference DFT method.  相似文献   

11.
Acidity calculations for some CH and NH superacids in 1,2-dichloroethane (DCE) were carried out using SMD and COSMO-RS continuum solvation models. After comparing the results of calculations with respective experimental pK(a) values it was found that the performance of SMD/M05-2X/6-31G* method is characterized by the mean unsigned error (MUE) of 0.5 pK(a) units and the slope of regression line of 0.915. The similar SMD/B3LYP/6-31G* approach was slightly less successful. The strong correlation over entire data set is confirmed by R(2) values of 0.990 and 0.984 for M05-2X and B3LYP functionals, respectively. The COSMO-RS method, while providing the value of the linear regression line slope similar to the corresponding values from SMD approach, characterized by rather loose correlation (R(2) = 0.823, MUE = 1.7 pK(a) units) between calculated and experimental pK(a) values in DCE solution.  相似文献   

12.
We present a systematic density functional investigation on the prediction of the 13C, 15N, 17O, and 19F NMR properties of 23 molecules with 21 density functionals. Extensive comparisons are made for both 13C magnetic shieldings and chemical shifts with respect to the gas phase experimental data and the best CCSD(T) results. We find that the OPBE and OPW91 exchange-correlation functionals perform significantly better than some popular functionals such as B3LYP and PBE1PBE, even surpassing, in many cases, the standard wavefunction-based method MP2. Further analysis has been performed to explore the individual role played by various exchange and correlation functionals. We find that the B88 and PBE exchange functionals have a too strong tendency of deshielding, leading to too deshielded magnetic shielding constants; whereas the OPTX exchange functional performs remarkably well. We claim that the main source of error arises from the exchange functional, but correlation functional also makes important contribution. We find that the correlation functionals may be grouped into two classes. class A, such as LYP and B98, leads to deshielded NMR values, deteriorating the overall performance; whereas class B, such as PW91 and PBE, generally increases the absolute shieldings, which complements the exchange functionals, leading to improved results in the calculation of NMR data.  相似文献   

13.
14.
The scaling of dynamical correlation energy in molecules obtained by the correlation functionals of density functional theory (DFT) is examined. The approach taken is very similar to the scaled external correlation method of Brown and Truhlar but is based on the observation that DFT correlation functionals, especially the LYP, appear to represent the dynamical portion of the correlation energy in molecules. We examine whether higher accuracy in atomization energies can be gained by scaling without significant deterioration of the structural and spectroscopic properties of the molecules using four DFT functionals (BLYP, OLYP, B3LYP, and O3LYP) on 19 molecules including the six molecule AE6 database, the latter being representative of a much larger, 109 molecule training set. We show that, with molecule specific scale factors, nearly perfect agreement with experiment can be achieved in atomization energies without increasing the average errors in other molecular properties relative to the DFT calculation. We further show that it is possible to find optimal scale factors which reduce the mean unsigned error per bond to levels comparable to those of some multilevel multicoefficient methods.  相似文献   

15.
An investigation of the influence of various gradient-corrected exchange and correlation functionals on the bond lengths and dipole moments of CO and N2O has been carried out using density functional theory. It is shown that whereas some functionals are found to be more sensitive to the basis set quality than are others, the more commonly used gradient-corrected functionals lead to properties in very good agreement with experiment provided that a sufficiently large basis set is employed. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
17.
Potential energy curves for five complexes with weak to medium strong hydrogen bonds have been computed with dispersion corrected DFT methods. The electronic density based vdW-DF2 and VV10 van der Waals density functionals have been tested, as well as an atom pair-wise correction method (DFT-D3). The short-range exchange-correlation components BLYP and rPW86-PBE together with the extended aug-cc-pVQZ basis sets have been employed. Reference data have been computed at the estimated CCSD(T)/CBS(aQ-a5) level of theory. The investigated systems are CH(4)·NH(3), Cl(3)CH·NH(3), NH(3)·NH(3), CH(3)F·C(2)H(2) and CH(3)F·H(2)O with binding energies ranging from -0.7 kcal mol(-1) to -5.5 kcal mol(-1). We find that all dispersion corrected methods perform reasonably well for these hydrogen bonds, but also observe distinct differences. The BLYP-D3 method provides the best results for three out of five systems. For the fluorinated complexes, the VV10 method gives remarkably good results. The vdW-DF2 method yields good interaction energies similar to the other methods (mean average deviation of 0.2-0.3 kcal mol(-1)), but fails to provide accurate equilibrium separations. Based on these results and previous experience with the computation of non-covalent interactions, for large-scale applications we can recommend DFT-D3 based structure optimizations with subsequent checking of interaction energies by single-point VV10 computations. Comparison of the DFT-D3 and VV10 results leads to the conclusion that the short-range exchange-correlation functional and not the dispersion correction mainly determines the achievable accuracy.  相似文献   

18.
Some properties of exact ensemble density functionals can be determined by examining the particle number dependence of ground state ensemble density matrices for systems where the integer ground state energies satisfy a convexity condition. The results include the observation that the integral of the product of the functional derivative and Fukui function of functionals that can be expressed as the trace of an operator is particle number independent for particle numbers between successive integers and the integral itself is equal to the difference between functionals evaluated at successive integer particle numbers. Expressions that must be satisfied by 2nd and higher order functional derivatives are formulated and equations that must be satisfied point by point in space are derived. Using the analytic Hooke's atom model, it is shown that commonly used correlation functional approximations do not bear any resemblance to a spatially dependent expression derived from the exact second order functional derivative of the correlation functional. It is also shown that two expressions for the mutual Coulomb energy are not equal when approximate exchange and correlation functionals are used.  相似文献   

19.
Mono- and polycyclic valence isomers of carbo-[3]oxocarbon C(9)O(3) and carbo-[5]oxocarbon C(15)O(5) have been characterized on the singlet spin state potential energy surface. By contrast to their geometry, their relative stability is highly sensitive to the calculation level. The performance of LDA, GGA, meta-GGA, and hybrid functionals is compared to that of HF, post-HF, and multiconfigurational calculations. The results obtained for C(9)O(3) are compared to those obtained for hydrocarbon analogues such as &[3]pericyclyne C9(H2)3 and carbo-[3]radialene C9(CH2)3 and are analyzed on the basis of an energy decomposition scheme. The respective role of the exchange and correlation counterparts of the functional in the discrepancy of the results is discussed.  相似文献   

20.
Local hybrid functionals with their position-dependent exact-exchange admixture are a conceptually simple and promising extension of the concept of a hybrid functional. Local hybrids based on a simple mixing of the local spin density approximation (LSDA) with exact exchange have been shown to be successful for thermochemistry, reaction barriers, and a range of other properties. So far, the combination of this generation of local hybrids with an LSDA correlation functional has been found to give the most favorable results for atomization energies, for a range of local mixing functions (LMFs) governing the exact-exchange admixture. Here, we show that the choice of correlation functional to be used with local hybrid exchange crucially influences the parameterization also of the exchange part as well as the overall performance. A novel ansatz for the correlation part of local hybrids is suggested based on (i) range-separation of LSDA correlation into short-range (SR) and long-range (LR) parts, and (ii) partial or full elimination of the one-electron self-correlation from the SR part. It is shown that such modified correlation functionals allow overall larger exact exchange admixture in thermochemically competitive local hybrids than before. This results in improvements for reaction barriers and for other properties crucially influenced by self-interaction errors, as demonstrated by a number of examples. Based on the range-separation approach, a fresh view on the breakdown of the correlation energy into dynamical and non-dynamical parts is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号