首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accuracy of biological simulations depends, in large part, on the treatment of electrostatics. Due to the availability of accurate experimental values, calculation of pKa provides stringent evaluation of computational methods. The generalized solvent boundary potential (GSBP) and Ewald summation electrostatic treatments were recently implemented for combined quantum mechanical and molecular mechanics (QM/MM) simulations by our group. These approaches were tested by calculating pKa shifts due to differences in electronic structure and electrostatic environment; the shifts were determined for a series of small molecules in solution, using various electrostatic treatments, and two residues (His 31, Lys 102) in the M102K T4-lysozyme mutant with large pKa shifts, using the GSBP approach. The calculations utilized a free energy perturbation scheme with the QM/MM potential function involving the self-consistent charge density functional tight binding (SCC-DFTB) and CHARMM as the QM and MM methods, respectively. The study of small molecules demonstrated that inconsistent electrostatic models produced results that were difficult to correct in a robust manner; by contrast, extended electrostatics, GSBP, and Ewald simulations produced consistent results once a bulk solvation contribution was carefully chosen. In addition to the electrostatic treatment, the pKa shifts were also sensitive to the level of the QM method and the scheme of treating QM/MM Coulombic interactions; however, simple perturbative corrections based on SCC-DFTB/CHARMM trajectories and higher level single point energy calculations were found to give satisfactory results. Combining all factors gave a root-mean-square difference of 0.7 pKa units for the relative pKa values of the small molecules compared to experiment. For the residues in the lysozyme, an accurate pKa shift was obtained for His 31 with multiple nanosecond simulations. For Lys 102, however, the pKa shift was estimated to be too large, even after more than 10 nanosecond simulations for each lambda window; the difficulty was due to the significant, but slow, reorganization of the protein and water structure when Lys 102 was protonated. The simulations support that Lys 102 is deprotonated in the X-ray structure and the protein is highly destabilized when this residue is protonated.  相似文献   

2.
Motivated by the long-term goal of theoretically analyzing long-range proton transfer (PT) kinetics in biomolecular pumps, researchers made a number of technical developments in the framework of quantum mechanics-molecular mechanics (QM/MM) simulations. A set of collective reaction coordinates is proposed for characterizing the progress of long-range proton transfers; unlike previous suggestions, the new coordinates can describe PT along highly nonlinear three-dimensional pathways. Calculations using a realistic model of carbonic anhydrase demonstrated that adiabatic mapping using these collective coordinates gives reliable energetics and critical geometrical parameters as compared to minimum energy path calculations, which suggests that the new coordinates can be effectively used as reaction coordinate in potential of mean force calculations for long-range PT in complex systems. In addition, the generalized solvent boundary potential was implemented in the QM/MM framework for rectangular geometries, which is useful for studying reactions in membrane systems. The resulting protocol was found to produce water structure in the interior of aquaporin consistent with previous studies including a much larger number of explicit solvent and lipid molecules. The effect of electrostatics for PT through a membrane protein was also illustrated with a simple model channel embedded in different dielectric continuum environments. The encouraging results observed so far suggest that robust theoretical analysis of long-range PT kinetics in biomolecular pumps can soon be realized in a QM/MM framework.  相似文献   

3.
We have developed a method to estimate free energies of reactions in proteins, called QM/MM-PBSA. It estimates the internal energy of the reactive site by quantum mechanical (QM) calculations, whereas bonded, electrostatic, and van der Waals interactions with the surrounding protein are calculated at the molecular mechanics (MM) level. The electrostatic part of the solvation energy of the reactant and the product is estimated by solving the Poisson-Boltzmann (PB) equation, and the nonpolar part of the solvation energy is estimated from the change in solvent-accessible surface area (SA). Finally, the change in entropy is estimated from the vibrational frequencies. We test this method for five proton-transfer reactions in the active sites of [Ni,Fe] hydrogenase and copper nitrite reductase. We show that QM/MM-PBSA reproduces the results of a strict QM/MM free-energy perturbation method with a mean absolute deviation (MAD) of 8-10 kJ/mol if snapshots from molecular dynamics simulations are used and 4-14 kJ/mol if a single QM/MM structure is used. This is appreciably better than the original QM/MM results or if the QM energies are supplemented with a point-charge model, a self-consistent reaction field, or a PB model of the protein and the solvent, which give MADs of 22-36 kJ/mol for the same test set.  相似文献   

4.
5.
The approximate density‐functional tight‐binding theory method DFTB3 has been implemented in the quantum mechanics/molecular mechanics (QM/MM) framework of the Gromacs molecular simulation package. We show that the efficient smooth particle–mesh Ewald implementation of Gromacs extends to the calculation of QM/MM electrostatic interactions. Further, we make use of the various free‐energy functionalities provided by Gromacs and the PLUMED plugin. We exploit the versatility and performance of the current framework in three typical applications of QM/MM methods to solve biophysical problems: (i) ultrafast proton transfer in malonaldehyde, (ii) conformation of the alanine dipeptide, and (iii) electron‐induced repair of a DNA lesion. Also discussed is the further development of the framework, regarding mostly the options for parallelization. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
7.
Molecular fragmentation quantum mechanics (QM) calculations have been combined with molecular mechanics (MM) to construct the fragmentation QM/MM method for simulations of dilute solutions of macromolecules. We adopt the electrostatics embedding QM/MM model, where the low-cost generalized energy-based fragmentation calculations are employed for the QM part. Conformation energy calculations, geometry optimizations, and Born-Oppenheimer molecular dynamics simulations of poly(ethylene oxide), PEO(n) (n = 6-20), and polyethylene, PE(n) ( n = 9-30), in aqueous solution have been performed within the framework of both fragmentation and conventional QM/MM methods. The intermolecular hydrogen bonding and chain configurations obtained from the fragmentation QM/MM simulations are consistent with the conventional QM/MM method. The length dependence of chain conformations and dynamics of PEO and PE oligomers in aqueous solutions is also investigated through the fragmentation QM/MM molecular dynamics simulations.  相似文献   

8.
The main concepts and important technical details of electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) simulations are explained and illustrated with the intent of assisting newcomers in performing and gauging the accuracy of such simulations, focused on smaller molecules in solution. Beginners are advised on how to increase the reliability and accuracy of the simulations through benchmarking. Central considerations on methodologies for QM/MM Molecular Dynamics (MD) simulations are presented, alongside technical fundamentals regarding the construction and manipulation of simulation systems using the python-based Atomic Simulation Environment (ASE). A worked example of QM/MM Born–Oppenheimer MD is included, and a flowchart summarizing the most salient decisions and tasks within the methodology is presented.  相似文献   

9.
We address methodological issues in quantum mechanics/molecular mechanics (QM/MM) calculations on a zinc‐dependent enzyme. We focus on the first stage of peptide bond cleavage by matrix metalloproteinase‐2 (MMP‐2), that is, the nucleophilic attack of the zinc‐coordinating water molecule on the carbonyl carbon atom of the scissile fragment of the substrate. This step is accompanied by significant charge redistribution around the zinc cation, bond cleavage, and bond formation. We vary the size and initial geometry of the model system as well as the computational protocol to demonstrate the influence of these choices on the results obtained. We present QM/MM potential energy profiles for a set of snapshots randomly selected from QM/MM‐based molecular dynamics simulations and analyze the differences in the computed profiles in structural terms. Since the substrate in MMP‐2 is located on the protein surface, we investigate the influence of the thickness of the water layer around the enzyme on the QM/MM energy profile. Thin water layers (0–2 Å) give unrealistic results because of structural reorganizations in the active‐site region at the protein surface. A 12 Å water layer appears to be sufficient to capture the effect of the solvent; the corresponding QM/MM energy profile is very close to that obtained from QM/MM/SMBP calculations using the solvent macromolecular boundary potential (SMBP). We apply the optimized computational protocol to explain the origin of the different catalytic activity of the Glu116Asp mutant: the energy barrier for the first step is higher, which is rationalized on structural grounds. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
A technique for implementing the integrated molecular orbital and molecular mechanics (IMOMM) methodology developed by Maseras and Morokuma that is used to perform combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations, frequency calculations and simulations of macromolecules including explicit solvent is presented. Although the IMOMM methodology is generalized to any coordinate system, the implementation first described by Maseras and Morokuma requires that the QM and MM gradients be transformed into internal coordinates before they are added together. This coordinate transformation can be cumbersome for macromolecular systems and can become ill-defined during the course of a molecular dynamics simulation. We describe an implementation of the IMOMM method in which the QM and MM gradients are combined in the cartesian coordinate system, thereby avoiding potential problems associated with using the internal coordinate system. The implementation can be used to perform combined QM/MM molecular dynamics simulations and frequency calculations within the IMOMM framework. Finally, we have examined the applicability of thermochemical data derived from IMOMM framework. Finally, we have examined the applicability of thermochemical data derived from IMOMM frequency calculations. Received: 11 May 1998 / Accepted: 14 August 1998 / Published online: 16 November 1998  相似文献   

11.
12.
To accurately determine the reaction path and its energetics for enzymatic and solution-phase reactions, we present a sequential sampling and optimization approach that greatly enhances the efficiency of the ab initio quantum mechanics/molecular mechanics minimum free-energy path (QM/MM-MFEP) method. In the QM/MM-MFEP method, the thermodynamics of a complex reaction system is described by the potential of mean force (PMF) surface of the quantum mechanical (QM) subsystem with a small number of degrees of freedom, somewhat like describing a reaction process in the gas phase. The main computational cost of the QM/MM-MFEP method comes from the statistical sampling of conformations of the molecular mechanical (MM) subsystem required for the calculation of the QM PMF and its gradient. In our new sequential sampling and optimization approach, we aim to reduce the amount of MM sampling while still retaining the accuracy of the results by first carrying out MM phase-space sampling and then optimizing the QM subsystem in the fixed-size ensemble of MM conformations. The resulting QM optimized structures are then used to obtain more accurate sampling of the MM subsystem. This process of sequential MM sampling and QM optimization is iterated until convergence. The use of a fixed-size, finite MM conformational ensemble enables the precise evaluation of the QM potential of mean force and its gradient within the ensemble, thus circumventing the challenges associated with statistical averaging and significantly speeding up the convergence of the optimization process. To further improve the accuracy of the QM/MM-MFEP method, the reaction path potential method developed by Lu and Yang [Z. Lu and W. Yang, J. Chem. Phys. 121, 89 (2004)] is employed to describe the QM/MM electrostatic interactions in an approximate yet accurate way with a computational cost that is comparable to classical MM simulations. The new method was successfully applied to two example reaction processes, the classical SN2 reaction of Cl-+CH3Cl in solution and the second proton transfer step of the reaction catalyzed by the enzyme 4-oxalocrotonate tautomerase. The activation free energies calculated with this new sequential sampling and optimization approach to the QM/MM-MFEP method agree well with results from other simulation approaches such as the umbrella sampling technique with direct QM/MM dynamics sampling, demonstrating the accuracy of the iterative QM/MM-MFEP method.  相似文献   

13.
The correct representation of solute-water interactions is essential for the accurate simulation of most biological phenomena. Several highly accurate quantum methods are available to deal with solvation by using both implicit and explicit solvents. So far, however, most evaluations of those methods were based on a single conformation, which neglects solute entropy. Here, we present the first test of a novel approach to determine hydration free energies that uses molecular mechanics (MM) to sample phase space and quantum mechanics (QM) to evaluate the potential energies. Free energies are determined by using re-weighting with the Non-Boltzmann Bennett (NBB) method. In this context, the method is referred to as QM-NBB. Based on snapshots from MM sampling and accounting for their correct Boltzmann weight, it is possible to obtain hydration free energies that incorporate the effect of solute entropy. We evaluate the performance of several QM implicit solvent models, as well as explicit solvent QM/MM for the blind subset of the SAMPL4 hydration free energy challenge. While classical free energy simulations with molecular dynamics give root mean square deviations (RMSD) of 2.8 and 2.3 kcal/mol, the hybrid approach yields an improved RMSD of 1.6 kcal/mol. By selecting an appropriate functional and basis set, the RMSD can be reduced to 1 kcal/mol for calculations based on a single conformation. Results for a selected set of challenging molecules imply that this RMSD can be further reduced by using NBB to reweight MM trajectories with the SMD implicit solvent model.  相似文献   

14.
We present an alternative approach to determine "density-dependent property"-derived charges for molecules in the condensed phase. In the case of a solution, it is essential to take into consideration the electron polarization of molecules in the active site of this system. The solute and solvent molecules in this site have to be described by a quantum mechanical technique and the others are allowed to be treated by a molecular mechanical method (QM/MM scheme). For calculations based on this scheme, using the forces and interaction energy as density-dependent property our charges from interaction energy and forces (CHIEF) approach can provide the atom-centered charges on the solute atoms. These charges reproduce well the electrostatic potentials around the solvent molecules and present properly the picture of the electron density of the QM subsystem in the solution system. Thus, the CHIEF charges can be considered as the atomic charges under the conditions of the QM/MM simulation, and then enable one to analyze electrostatic interactions between atoms in the QM and MM regions. This approach would give a view of the QM nuclei and electrons different from the conventional methods.  相似文献   

15.
A new formalism for quantum mechanical / molecular mechanical (QM/MM) dynamics of chemical species in solution has been developed, which does not require the construction of any other potential functions except those for solvent–solvent interactions, maintains all the advantages of large simulation boxes and ensures the accuracy of ab initio quantum mechanics for all forces acting in the chemically most relevant region. Interactions between solute and more distant solvent molecules are incorporated by a dynamically adjusted force field corresponding to the actual molecular configuration of the simulated system and charges derived from the electron distribution in the solvate. The new formalism has been tested with some examples of hydrated ions, for which accurate conventional ab initio QM/MM simulations have been previously performed, and the comparison shows equivalence and in some aspects superiority of the new method. As this simulation procedure does not require any tedious construction of two-and three-body interaction potentials inherent to conventional QM/MM approaches, it opens the straightforward access to ab initio molecular dynamics simulations of any kind of solutes, such as metal complexes and other composite species in solution.  相似文献   

16.
17.
18.
19.
20.
We introduce error weighting functions into the perturbative Monte Carlo method for use with a hybrid ab initio quantum mechanics/molecular mechanics (QM/MM) potential. The perturbative Monte Carlo approach introduced earlier provides a means to reduce the number of full SCF calculations in simulations using a QM/MM potential by evoking perturbation theory to calculate energy changes due to displacements of an MM molecule. The use of weighting functions, introduced here, allows an optimal number of MM molecule displacements to occur between the performance of the full self-consistent field calculations. This will allow the ab initio QM/MM approach to be applied to systems that require more accurate treatment of the QM and/or MM regions. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 1632–1638, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号