首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose new isoreticular metal-organic framework (IRMOF) materials to increase the hydrogen storage capacity at room temperature. Based on the potential-energy surface of hydrogen molecules on IRMOF linkers and the interaction energy between hydrogen molecules, we estimate the saturation value of hydrogen sorption capacity at room temperature. We discuss design criteria and propose new IRMOF materials that have high gravimetric and volumetric hydrogen storage densities. These new IRMOF materials may have gravimetric storage density up to 6.5 wt % and volumetric storage density up to 40 kg H2/m3 at room temperature.  相似文献   

2.
Xuan W  Zhu C  Liu Y  Cui Y 《Chemical Society reviews》2012,41(5):1677-1695
Metal-organic frameworks (MOFs) have emerged as a new type of porous materials for diverse applications. Most open MOFs reported to date are microporous (pore sizes <2 nm), and only a small fraction of MOFs with ordered mesoscale domains (2-50 nm) is reported. This tutorial review covers recent advances in the field of mesoporous MOFs (mesoMOFs), including their design and synthesis, porosity activation and surface modification, and potential applications in storage and separation, catalysis, drug delivery and imaging. Their specificities are dependent on the pore shape, size, and chemical environments of the cages or channels. The relationship between the structures and functions is discussed. The future outlook for the field is discussed in the context of current challenges in applications of mesoporous materials.  相似文献   

3.
4.
We present a study on the binding properties of molecular hydrogen to several polar aromatic molecules and to a model for the metal-oxide corner of the metal organic framework materials recently investigated as promising supports for hydrogen storage. Density functional theory employing the Perdew Wang exchange-correlation functional and second order Møller-Plesset calculations are used to determine the equilibrium structures of complexes with molecular hydrogen and their stability. It is found that for most hetero-aromatics the edge sites for molecular hydrogen physisorption have stabilities comparable to the top sites. The DFT predicted binding energies compare favorably with those estimated at MP2 level, and get closer to the MP2 results for increased electrostatic contributions (induced by the polar aromatics) to the intermolecular interaction. Vibrational frequencies are also computed at the DFT level, and infrared activities of the H2 stretching frequency are compared for the various complexes. Pyrrole, pyridine and n-oxide pyridine are predicted to form the more stable complexes among one-ring aromatics. The computed binding energies to metal-organic framework materials are in good agreement with experimental observations. It is suggested that replacement of the organic linker in MOF materials with some of the more efficient aromatics investigated here might contribute to enhance the H2 storage properties of mixed inorganic–organic materials.  相似文献   

5.
On account of their structural similarity to cofactors found in many metallo-enzymes, metalloporphyrins are obvious potential building blocks for catalytically active, metal-organic framework (MOF) materials. While numerous porphyrin-based MOFs have already been described, versions featuring highly accessible active sites and permanent microporosity are remarkably scarce. Indeed, of the more than 70 previously reported porphyrinic MOFs, only one has been shown to be both permanently microporous and contain internally accessible active sites for chemical catalysis. Attempts to generalize the design approach used in this single successful case have failed. Reported here, however, is the synthesis of an extended family of MOFs that directly incorporate a variety of metalloporphyrins (specifically Al(3+), Zn(2+), Pd(2+), Mn(3+), and Fe(3+) complexes). These robust porphyrinic materials (RPMs) feature large channels and readily accessible active sites. As an illustrative example, one of the manganese-containing RPMs is shown to be catalytically competent for the oxidation of alkenes and alkanes.  相似文献   

6.
Metal-organic frameworks (MOFs) are promising materials for applications such as separation, catalysis, and gas storage. A key indicator of their structural stability is the shear modulus. By density functional theory calculations in a 106-atom supercell, under the local density approximation, we find c(11)=29.2 GPa and c(12)=13.1 GPa for Zn-based MOF 5. However, we find c(44) of MOF-5 to be exceedingly small, only 1.4 GPa at T=0 K. The binding energy E(ads) of a single hydrogen molecule in MOF-5 is evaluated using the same setup. We find it to be -0.069 to -0.086 eVH(2) near the benzene linker and -0.106 to -0.160 eVH(2) near the Zn(4)O tetrahedra. Substitutions of chlorine and hydroxyl in the benzene linker have negligible effect on the physisorption energies. Pentacoordinated copper (and aluminum) in a framework structure similar to MOF-2 gives E(ads) approximately -0.291 eVH(2) (and -0.230 eVH(2)), and substitution of nitrogen in benzene (pyrazine) further enhances E(ads) near the organic linker to -0.16 eVH(2), according to density functional theory with local density approximation.  相似文献   

7.
8.
A nanotubular metal-organic framework (MOF), {[(WS(4)Cu(4))I(2)(dptz)(3)]·DMF}(n) (dptz = 3,6-di(pyridin-4-yl)-1,2,4,5-tetrazine, DMF = N,N-dimethylformamide) for sensing small solvent molecules is presented. When accommodating different solvent molecules as guests, the resulting inclusion compounds exhibit different colors depending on the solvent guests, and more interestingly, the band gaps of these solvent-included complexes are in linear correlation with the polarity of the guest solvents. The solvent molecules can be sensed by the changes of UV-vis spectra of the corresponding inclusion compounds, showing a new way of signal transduction as a new kind of sensor. The sensing by such a MOF occurs within the channel-containing material rather than on the external surface.  相似文献   

9.
10.
A series of highly porous University of Michigan Crystalline Material (UMCM-1) type Zn-based metal-organic frameworks (MOFs) were synthesized from mono- and bi-functionalized benzenedicarboxylate (BDC) ligands. In total, 16 new functionalized UMCM-1 derivatives were obtained by a combination of pre- and postsynthetic functionalization. Through postsynthetic modification (PSM), amino-halo bifunctional MOFs were converted into amide-halo materials via solid-state acylation reactions. A series of bifunctional MOFs containing Cl, Br, and I groups revealed that PSM conversion is not affected by the size of the halide, only by the steric bulk of the reagent used in these solid-state organic transformations.  相似文献   

11.
A three-dimensional microporous metal-organic framework [Cd(2)(Tzc)(2)](n), which is dehydrated from [Cd(2)(Tzc)(2)(H(2)O)(2)](n), exhibits selective gas adsorption and large hydrogen sorption hysteresis.  相似文献   

12.
Monte Carlo simulations were performed modeling hydrogen sorption in a recently synthesized metal-organic framework material (MOF) that exhibits large molecular hydrogen uptake capacity. The MOF is remarkable because at 78 K and 1.0 atm it sorbs hydrogen at a density near that of liquid hydrogen (at 20 K and 1.0 atm) when considering H2 density in the pores. Unlike most other MOFs that have been investigated for hydrogen storage, it has a highly ionic framework and many relatively small channels. The simulations demonstrate that it is both of these physical characteristics that lead to relatively strong hydrogen interactions in the MOF and ultimately large hydrogen uptake. Microscopically, hydrogen interacts with the MOF via three principle attractive potential energy contributions: Van der Waals, charge-quadrupole, and induction. Previous simulations of hydrogen storage in MOFs and other materials have not focused on the role of polarization effects, but they are demonstrated here to be the dominant contribution to hydrogen physisorption. Indeed, polarization interactions in the MOF lead to two distinct populations of dipolar hydrogen that are identified from the simulations that should be experimentally discernible using, for example, Raman spectroscopy. Since polarization interactions are significantly enhanced by the presence of a charged framework with narrow pores, MOFs are excellent hydrogen storage candidates.  相似文献   

13.
Recent years have seen the development of a new class of porous coordination polymers known collectively as metal organic framework materials (MOFs). This review outlines recent progress in understanding how adsorption characteristics of these systems differ from rigid classical sorbents such as activated carbon and zeolites. Gas/vapor adsorption studies for characterization of the porous structures of MOF materials are reviewed and differences in adsorption characteristics based on detailed measurement of equilibrium and dynamical sorption behavior, compared with previous generations of sorbents, are highlighted. The role of framework flexibility and specific structural features, such as windows and pore cavities, within the MOF porous structures are discussed in relation to adsorption mechanisms.  相似文献   

14.
A microporous metal-organic framework Zn(ADC)(4,4'-Bpe)(0.5).xG [1; ADC = 4,4'-azobenzenedicarboxylate, 4,4'-Bpe = trans-bis(4-pyridyl)ethylene, G = guest molecules] with a triply interpenetrative primitive cubic net was synthesized and characterized. With pores of about 3.4 x 3.4 A, the activated 1a exhibits highly selective sorption behavior toward H(2)/N(2), H(2)/CO, and CO(2)/CH(4).  相似文献   

15.
Novel metal-organic frameworks (MOFs) may lead to advances in adsorption and catalysis owing to their superior properties compared to traditional nanoporous materials. A combination of the grand canonical Monte Carlo method and configurational-bias Monte Carlo simulation was used to evaluate the adsorption isotherms of C4-C6 alkane isomer mixtures in IRMOF-1 and IRMOF-6. The amounts of adsorbed linear and branched alkanes increase with increasing pressure, and the amount of branched alkanes is larger than that of the linear ones. The locations of the alkane isomer reveal that the Zn4O clusters of the IRMOFs are the preferential adsorption sites for the adsorbate molecules. The interaction energy between the Zn4O cluster and the adsorbate is larger than that between the organic linker and the adsorbate. It was further confirmed that the Zn4O cluster plays a much more important role in adsorption by pushing a probe molecule into the pore at positions closer to the Zn4O cluster. It is difficult for branched alkane molecules to approach the Zn4O cluster of IRMOF-6 closely owing to strong spatial hindrance. In addition, the adsorption selectivity is discussed from the viewpoints of thermodynamics and kinetics, and the diffusion behavior of n-butane and 2-methylpropane were investigated to illustrate the relationship between diffusion and adsorption.  相似文献   

16.
A high fidelity molecular model is developed for a metal-organic framework (MOF) with narrow (approximately 7.3 A?) nearly square channels. MOF potential models, both with and neglecting explicit polarization, are constructed. Atomic partial point charges for simulation are derived from both fragment-based and fully periodic electronic structure calculations. The molecular models are designed to accurately predict and retrodict material gas sorption properties while assessing the role of induction for molecular packing in highly restricted spaces. Thus, the MOF is assayed via grand canonical Monte Carlo (GCMC) for its potential in hydrogen storage. The confining channels are found to typically accommodate between two to three hydrogen molecules in close proximity to the MOF framework at or near saturation pressures. Further, the net attractive potential energy interactions are dominated by van der Waals interactions in the highly polar MOF - induction changes the structure of the sorbed hydrogen but not the MOF storage capacity. Thus, narrow channels, while providing reasonably promising isosteric heat values, are not the best choice of topology for gas sorption applications from both a molecular and gravimetric perspective.  相似文献   

17.
Breathing effect: Using two triazole homologues (1H-benzotriazole and 1,2,3-1H-triazole), two isoreticular microporous Zn-benzenedicarboxylate frameworks 1 and 2 with reverse dynamic features are presented, in which different sized triazole ligands effectively control the state of breathing of two flexible frameworks.  相似文献   

18.
19.
The first near-infrared luminescent ytterbium metal-organic framework has been realized for the highly selective and sensitive sensing of small molecules.  相似文献   

20.
A microporous metal-organic framework, MOF, Cu(FMA)(4,4'-Bpe)0.5 (3a, FMA = fumarate; 4,4'-Bpe = 4,4'-Bpe = trans-bis(4-pyridyl)ethylene) was rationally designed from a primitive cubic net whose pores are tuned by double framework interpenetration. With pore cavities of about 3.6 A, which are interconnected by pore windows of 2.0 x 3.2 A, 3a shows highly selective sorption behaviors of gas molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号