首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the context of the SAMPL5 blinded challenge standard free energies of binding were predicted for a dataset of 22 small guest molecules and three different host molecules octa-acids (OAH and OAMe) and a cucurbituril (CBC). Three sets of predictions were submitted, each based on different variations of classical molecular dynamics alchemical free energy calculation protocols based on the double annihilation method. The first model (model A) yields a free energy of binding based on computed free energy changes in solvated and host-guest complex phases; the second (model B) adds long range dispersion corrections to the previous result; the third (model C) uses an additional standard state correction term to account for the use of distance restraints during the molecular dynamics simulations. Model C performs the best in terms of mean unsigned error for all guests (MUE \(3.2\,<\,3.4\,<\,3.6\,\text{kcal}\,\text{mol}^{-1}\)—95 % confidence interval) for the whole data set and in particular for the octa-acid systems (MUE \(1.7\,<\,1.9\,<\,2.1\,\text{kcal}\,\text{mol}^{-1}\)). The overall correlation with experimental data for all models is encouraging (\(R^2\, 0.65\,<\,0.70<0.75\)). The correlation between experimental and computational free energy of binding ranks as one of the highest with respect to other entries in the challenge. Nonetheless the large MUE for the best performing model highlights systematic errors, and submissions from other groups fared better with respect to this metric.  相似文献   

2.
In the context of the SAMPL5 challenge water-cyclohexane distribution coefficients for 53 drug-like molecules were predicted. Four different models based on molecular dynamics free energy calculations were tested. All models initially assumed only one chemical state present in aqueous or organic phases. Model A is based on results from an alchemical annihilation scheme; model B adds a long range correction for the Lennard Jones potentials to model A; model C adds charging free energy corrections; model D applies the charging correction from model C to ionizable species only. Model A and B perform better in terms of mean-unsigned error (\(\hbox {MUE}=6.79<6.87<6.95 \log\) D units ? 95 % confidence interval) and determination coefficient \((\hbox {R}^2 = 0.26< 0.27< 0.28)\), while charging corrections lead to poorer results with model D (\(\hbox {MUE}=12.8<12.63<12.98\) and \(\hbox {R}^2 = 0.16<0.17<0.18\)). Because overall errors were large, a retrospective analysis that allowed co-existence of ionisable and neutral species of a molecule in aqueous phase was investigated. This considerably reduced systematic errors (\(\hbox {MUE}=1.87<1.97<2.07\) and \(\hbox {R}^2 = 0.35<0.40<0.45\)). Overall accurate \(\log D\) predictions for drug-like molecules that may adopt multiple tautomers and charge states proved difficult, indicating a need for methodological advances to enable satisfactory treatment by explicit-solvent molecular simulations.  相似文献   

3.
4.
Here, we give an overview of the small molecule hydration portion of the SAMPL4 challenge, which focused on predicting hydration free energies for a series of 47 small molecules. These gas-to-water transfer free energies have in the past proven a valuable test of a variety of computational methods and force fields. Here, in contrast to some previous SAMPL challenges, we find a relatively wide range of methods perform quite well on this test set, with RMS errors in the 1.2 kcal/mol range for several of the best performing methods. Top-performers included a quantum mechanical approach with continuum solvent models and functional group corrections, alchemical molecular dynamics simulations with a classical all-atom force field, and a single-conformation Poisson–Boltzmann approach. While 1.2 kcal/mol is still a significant error, experimental hydration free energies covered a range of nearly 20 kcal/mol, so methods typically showed substantial predictive power. Here, a substantial new focus was on evaluation of error estimates, as predicting when a computational prediction is reliable versus unreliable has considerable practical value. We found, however, that in many cases errors are substantially underestimated, and that typically little effort has been invested in estimating likely error. We believe this is an important area for further research.  相似文献   

5.
We continued prospective assessments of the Wilma–solvated interaction energy (SIE) platform for pose prediction, binding affinity prediction, and virtual screening on the challenging SAMPL4 data sets including the HIV-integrase inhibitor and two host–guest systems. New features of the docking algorithm and scoring function are tested here prospectively for the first time. Wilma–SIE provides good correlations with actual binding affinities over a wide range of binding affinities that includes strong binders as in the case of SAMPL4 host–guest systems. Absolute binding affinities are also reproduced with appropriate training of the scoring function on available data sets or from comparative estimation of the change in target’s vibrational entropy. Even when binding modes are known, SIE predictions lack correlation with experimental affinities within dynamic ranges below 2 kcal/mol as in the case of HIV-integrase ligands, but they correctly signaled the narrowness of the dynamic range. Using a common protein structure for all ligands can reduce the noise, while incorporating a more sophisticated solvation treatment improves absolute predictions. The HIV-integrase virtual screening data set consists of promiscuous weak binders with relatively high flexibility and thus it falls outside of the applicability domain of the Wilma–SIE docking platform. Despite these difficulties, unbiased docking around three known binding sites of the enzyme resulted in over a third of ligands being docked within 2 Å from their actual poses and over half of the ligands docked in the correct site, leading to better-than-random virtual screening results.  相似文献   

6.
An implicit solvent model described by a non-simple dielectric medium is used for the prediction of hydration free energies on the dataset of 47 molecules in the SAMPL4 challenge. The solute is represented by a minimal parameter set model based on a new all atom force-field, named the liquid simulation force-field. The importance of a first solvation shell correction to the hydration free energy prediction is discussed and two different approaches are introduced to address it: either with an empirical correction to a few functional groups (alcohol, ether, ester, amines and aromatic nitrogen), or an ab initio correction based on the formation of a solute/explicit water complex. Both approaches give equally good predictions with an average unsigned error <1 kcal/mol. Chemical accuracy is obtained.  相似文献   

7.
SAMPL challenges (Mobley et al. in J Comput Aided Mol Des 28:135–150, 2014; Skillman in J Comput Aided Mol Des 26:473–474, 2012; Geballe in J Comput Aided Mol Des 24:259–279, 2010; Guthrie in J Phys Chem B 113:4501–4507, 2009) provide excellent opportunities to assess theoretical approaches on new data sets with a goal of gaining greater insight towards protein and ligand modeling. In the SAMPL5 experiment, cyclohexane–water partition coefficients were determined using a vertical solvation scheme in conjunction with the SMD continuum solvent model. Several DFT functionals partnered with correlation consistent basis sets were evaluated for the prediction of the partition coefficients. The approach chosen for the competition, a B3PW91 vertical solvation scheme, yields a mean absolute deviation of 1.9 logP units and performs well at estimating the correct hydrophilicity and hydrophobicity for the full SAMPL5 molecule set.  相似文献   

8.
Journal of Computer-Aided Molecular Design - Approaches for computing small molecule binding free energies based on molecular simulations are now regularly being employed by academic and industry...  相似文献   

9.
As part of the SAMPL6 host–guest blind challenge, the AMOEBA force field was applied to calculate the absolute binding free energy for a cucurbit[8]uril host complexed with 14 diverse guests, ranging from small, rigid structures to drug molecules. The AMOEBA results from the initial submission prompted an investigation into aspects of the methodology and parameterization employed. Lessons learned from the blind challenge include: a double annihilation scheme (electrostatics and van der Waals) is needed to obtain proper sampling of guest conformations, annihilation of key torsion parameters of the guest are recommended for flexible guests, and a more thorough analysis of torsion parameters is warranted. When put in to practice with the AMOEBA model, the lessons learned improved the MUE from 2.63 to 1.20 kcal/mol and the RMSE from 3.62 to 1.68 kcal/mol, respectively. Overall, the AMOEBA protocol for determining absolute binding free energies benefitted from participation in the SAMPL6 host–guest blind challenge and the results suggest the implementation of the methodology in future host–guest calculations.  相似文献   

10.
For the fifth time I have provided a set of solvation energies (1 M gas to 1 M aqueous) for a SAMPL challenge. In this set there are 23 blind compounds and 30 supplementary compounds of related structure to one of the blind sets, but for which the solvation energy is readily available. The best current values of each compound are presented along with complete documentation of the experimental origins of the solvation energies. The calculations needed to go from reported data to solvation energies are presented, with particular attention to aspects which are new to this set. For some compounds the vapor pressures (VP) were reported for the liquid compound, which is solid at room temperature. To correct from VPsubcooled liquid to VPsublimation requires ΔSfusion, which is only known for mannitol. Estimated values were used for the others, all but one of which were benzene derivatives and expected to have very similar values. The final compound for which ΔSfusion was estimated was menthol, which melts at 42 °C so that modest errors in ΔSfusion will have little effect. It was also necessary to look into the effects of including estimated values of ΔCp on this correction. The approximate sizes of the effects of inclusion of ΔCp in the correction from VPsubcooled liquid to VPsublimation were estimated and it was noted that inclusion of ΔCp invariably makes ΔGS more positive. To extend the set of compounds for which the solvation energy could be calculated we explored the use of boiling point (b.p.) data from Reaxys/Beilstein as a substitute for studies of the VP as a function of temperature. B.p. data are not always reliable so it was necessary to develop a criterion for rejecting outliers. For two compounds (chlorinated guaiacols) it became clear that inclusion represented overreach; for each there were only two independent pressure, temperature points, which is too little for a trustworthy extrapolation. For a number of compounds the extrapolation from lowest temperature at which the VP was reported to 25 °C was long (sometimes over 100°) so that it was necessary to consider whether ΔCp might have significant effects. The problem is that there are no experimental values and possible intramolecular hydrogen bonds make estimation uncertain in some cases. The approximate sizes of the effects of ΔCp were estimated, and it was noted that inclusion of ΔCp in the extrapolation of VP down to room temperature invariably makes ΔGs more negative.  相似文献   

11.
This paper reports the results of our attempt to predict hydration free energies on the SAMPL2 blind challenge dataset. We mostly examine the effects of the solute electrostatic component on the accuracy of the predictions. The usefulness of electronic polarization in predicting hydration free energies is assessed by comparing the Electronic Polarization from Internal Continuum model and the self consistent reaction field IEF-PCM to standard non-polarizable charge models such as RESP and AM1-BCC. We also determine an optimal restraint weight for Dielectric-RESP atomic charges fitting. Statistical analysis of the results could not distinguish the methods from one another. The smallest average unsigned error obtained is 1.9 ± 0.6 kcal/mol (95% confidence level). A class of outliers led us to investigate the importance of the solute–solvent instantaneous induction energy, a missing term in PB continuum models. We estimated values between −1.5 and −6 kcal/mol for a series of halo-benzenes which can explain why some predicted hydration energies of non-polar molecules significantly disagreed with experiment.  相似文献   

12.
A variety of fields would benefit from accurate \(pK_a\) predictions, especially drug design due to the effect a change in ionization state can have on a molecule’s physiochemical properties. Participants in the recent SAMPL6 blind challenge were asked to submit predictions for microscopic and macroscopic \(pK_a\)s of 24 drug like small molecules. We recently built a general model for predicting \(pK_a\)s using a Gaussian process regression trained using physical and chemical features of each ionizable group. Our pipeline takes a molecular graph and uses the OpenEye Toolkits to calculate features describing the removal of a proton. These features are fed into a Scikit-learn Gaussian process to predict microscopic \(pK_a\)s which are then used to analytically determine macroscopic \(pK_a\)s. Our Gaussian process is trained on a set of 2700 macroscopic \(pK_a\)s from monoprotic and select diprotic molecules. Here, we share our results for microscopic and macroscopic predictions in the SAMPL6 challenge. Overall, we ranked in the middle of the pack compared to other participants, but our fairly good agreement with experiment is still promising considering the challenge molecules are chemically diverse and often polyprotic while our training set is predominately monoprotic. Of particular importance to us when building this model was to include an uncertainty estimate based on the chemistry of the molecule that would reflect the likely accuracy of our prediction. Our model reports large uncertainties for the molecules that appear to have chemistry outside our domain of applicability, along with good agreement in quantile–quantile plots, indicating it can predict its own accuracy. The challenge highlighted a variety of means to improve our model, including adding more polyprotic molecules to our training set and more carefully considering what functional groups we do or do not identify as ionizable.  相似文献   

13.
As part of the SAMPL5 blind prediction challenge, we calculate the absolute binding free energies of six guest molecules to an octa-acid (OAH) and to a methylated octa-acid (OAMe). We use the double decoupling method via thermodynamic integration (TI) or Hamiltonian replica exchange in connection with the Bennett acceptance ratio (HREM-BAR). We produce the binding poses either through manual docking or by using GalaxyDock-HG, a docking software developed specifically for this study. The root mean square deviations for our most accurate predictions are 1.4 kcal mol?1 for OAH with TI and 1.9 kcal mol?1 for OAMe with HREM-BAR. Our best results for OAMe were obtained for systems with ionic concentrations corresponding to the ionic strength of the experimental solution. The most problematic system contains a halogenated guest. Our attempt to model the σ-hole of the bromine using a constrained off-site point charge, does not improve results. We use results from molecular dynamics simulations to argue that the distinct binding affinities of this guest to OAH and OAMe are due to a difference in the flexibility of the host. We believe that the results of this extensive analysis of host-guest complexes will help improve the protocol used in predicting binding affinities for larger systems, such as protein-substrate compounds.  相似文献   

14.
The funnel metadynamics method enables rigorous calculation of the potential of mean force along an arbitrary binding path and thereby evaluation of the absolute binding free energy. A problem of such physical paths is that the mechanism characterizing the binding process is not always obvious. In particular, it might involve reorganization of the solvent in the binding site, which is not easily captured with a few geometrically defined collective variables that can be used for biasing. In this paper, we propose and test a simple method to resolve this trapped-water problem by dividing the process into an artificial host-desolvation step and an actual binding step. We show that, under certain circumstances, the contribution from the desolvation step can be calculated without introducing further statistical errors. We apply the method to the problem of predicting host–guest binding free energies in the SAMPL5 blind challenge, using two octa-acid hosts and six guest molecules. For one of the hosts, well-converged results are obtained and the prediction of relative binding free energies is the best among all the SAMPL5 submissions. For the other host, which has a narrower binding pocket, the statistical uncertainties are slightly higher; longer simulations would therefore be needed to obtain conclusive results.  相似文献   

15.
Journal of Computer-Aided Molecular Design - We applied the COSMO-RS method to predict the partition coefficient logP between water and 1-octanol for 22 small drug like molecules within the...  相似文献   

16.
Hydration free energy calculations have become important tests of force fields. Alchemical free energy calculations based on molecular dynamics simulations provide a rigorous way to calculate these free energies for a particular force field, given sufficient sampling. Here, we report results of alchemical hydration free energy calculations for the set of small molecules comprising the 2011 Statistical Assessment of Modeling of Proteins and Ligands challenge. Our calculations are largely based on the Generalized Amber Force Field with several different charge models, and we achieved RMS errors in the 1.4-2.2 kcal/mol range depending on charge model, marginally higher than what we typically observed in previous studies (Mobley et al. in J Phys Chem B 111(9):2242-2254, 2007, J Chem Theory Comput 5(2):350-358, 2009, J Phys Chem B 115:1329-1332, 2011; Nicholls et al. in J Med Chem 51:769-779, 2008; Klimovich and Mobley in J Comput Aided Mol Design 24(4):307-316, 2010). The test set consists of ethane, biphenyl, and a dibenzyl dioxin, as well as a series of chlorinated derivatives of each. We found that, for this set, using high-quality partial charges from MP2/cc-PVTZ SCRF RESP fits provided marginally improved agreement with experiment over using AM1-BCC partial charges as we have more typically done, in keeping with our recent findings (Mobley et al. in J Phys Chem B 115:1329-1332, 2011). Switching to OPLS Lennard-Jones parameters with AM1-BCC charges also improves agreement with experiment. We also find a number of chemical trends within each molecular series which we can explain, but there are also some surprises, including some that are captured by the calculations and some that are not.  相似文献   

17.
Extended solvent-contact model was applied to the blind prediction of the hydration free energies of 47 organic molecules included in the SAMPL4 data set. To obtain a suitable prediction tool, we constructed a hydration free energy function involving three kinds of atomic parameters. With respect to total 34 atom types introduced to describe all SAMPL4 molecules, 102 atomic parameters were defined and optimized with a standard genetic algorithm in such a way to minimize the difference between the experimental hydration free energies and those calculated with the hydration free energy function. In this parameterization, we used a training set comprising 77 organic molecules with varying sizes and shapes. The estimated hydration free energies for the SAMPL4 molecules compared reasonably well with the experimental results with the associated squared correlation coefficient and root mean square deviation of 0.89 and 1.46 kcal/mol, respectively. Based on the comparative analysis of experimental and computational hydration free energies of the SAMPL4 molecules, the methods for further improvement of the present hydration model are suggested.  相似文献   

18.
19.
Here, we give an overview of the protein-ligand binding portion of the Statistical Assessment of Modeling of Proteins and Ligands 4 (SAMPL4) challenge, which focused on predicting binding of HIV integrase inhibitors in the catalytic core domain. The challenge encompassed three components—a small “virtual screening” challenge, a binding mode prediction component, and a small affinity prediction component. Here, we give summary results and statistics concerning the performance of all submissions at each of these challenges. Virtual screening was particularly challenging here in part because, in contrast to more typical virtual screening test sets, the inactive compounds were tested because they were thought to be likely binders, so only the very top predictions performed significantly better than random. Pose prediction was also quite challenging, in part because inhibitors in the set bind to three different sites, so even identifying the correct binding site was challenging. Still, the best methods managed low root mean squared deviation predictions in many cases. Here, we give an overview of results, highlight some features of methods which worked particularly well, and refer the interested reader to papers in this issue which describe specific submissions for additional details.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号