首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we employ local Fourier analysis (LFA) to analyze the convergence properties of multigrid methods for higher‐order finite‐element approximations to the Laplacian problem. We find that the classical LFA smoothing factor, where the coarse‐grid correction is assumed to be an ideal operator that annihilates the low‐frequency error components and leaves the high‐frequency components unchanged, fails to accurately predict the observed multigrid performance and, consequently, cannot be a reliable analysis tool to give good performance estimates of the two‐grid convergence factor. While two‐grid LFA still offers a reliable prediction, it leads to more complex symbols that are cumbersome to use to optimize parameters of the relaxation scheme, as is often needed for complex problems. For the purposes of this analytical optimization as well as to have simple predictive analysis, we propose a modification that is “between” two‐grid LFA and smoothing analysis, which yields reasonable predictions to help choose correct damping parameters for relaxation. This exploration may help us better understand multigrid performance for higher‐order finite element discretizations, including for Q2Q1 (Taylor‐Hood) elements for the Stokes equations. Finally, we present two‐grid and multigrid experiments, where the corrected parameter choice is shown to yield significant improvements in the resulting two‐grid and multigrid convergence factors.  相似文献   

2.
为了改进求解大型稀疏线性互补问题模系多重网格方法的收敛速度和计算时间,本文采用加速模系超松弛(AMSOR)迭代方法作为光滑算子.局部傅里叶分析和数值结果表明此光滑算子能有效地改进模系多重网格方法的收敛因子、迭代次数和计算时间.  相似文献   

3.
A poroelastic saturated medium can be modeled by means of Biot's theory of consolidation. It describes the time‐dependent interaction between the deformation of porous material and the fluid flow inside of it. Here, for the efficient solution of the poroelastic equations, a multigrid method is employed with an Uzawa‐type iteration as the smoother. The Uzawa smoother is an equation‐wise procedure. It shall be interpreted as a combination of the symmetric Gauss‐Seidel smoothing for displacements, together with a Richardson iteration for the Schur complement in the pressure field. The Richardson iteration involves a relaxation parameter which affects the convergence speed, and has to be carefully determined. The analysis of the smoother is based on the framework of local Fourier analysis (LFA) and it allows us to provide an analytic bound of the smoothing factor of the Uzawa smoother as well as an optimal value of the relaxation parameter. Numerical experiments show that our upper bound provides a satisfactory estimate of the exact smoothing factor, and the selected relaxation parameter is optimal. In order to improve the convergence performance, the acceleration of multigrid by iterant recombination is taken into account. Numerical results confirm the efficiency and robustness of the acceleration scheme.  相似文献   

4.
Parallel‐in‐time algorithms have been successfully employed for reducing time‐to‐solution of a variety of partial differential equations, especially for diffusive (parabolic‐type) equations. A major failing of parallel‐in‐time approaches to date, however, is that most methods show instabilities or poor convergence for hyperbolic problems. This paper focuses on the analysis of the convergence behavior of multigrid methods for the parallel‐in‐time solution of hyperbolic problems. Three analysis tools are considered that differ, in particular, in the treatment of the time dimension: (a) space–time local Fourier analysis, using a Fourier ansatz in space and time; (b) semi‐algebraic mode analysis, coupling standard local Fourier analysis approaches in space with algebraic computation in time; and (c) a two‐level reduction analysis, considering error propagation only on the coarse time grid. In this paper, we show how insights from reduction analysis can be used to improve feasibility of the semi‐algebraic mode analysis, resulting in a tool that offers the best features of both analysis techniques. Following validating numerical results, we investigate what insights the combined analysis framework can offer for two model hyperbolic problems, the linear advection equation in one space dimension and linear elasticity in two space dimensions.  相似文献   

5.
This paper deals with a stencil-based implementation of a geometric multigrid method on semi-structured triangular grids (triangulations obtained by regular refinement of an irregular coarse triangulation) for linear finite element methods. An efficient and elegant procedure to construct these stencils using a reference stencil associated to a canonical hexagon is proposed. Local Fourier Analysis (LFA) is applied to obtain asymptotic convergence estimates. Numerical experiments are presented to illustrate the efficiency of this geometric multigrid algorithm, which is based on a three-color smoother.  相似文献   

6.
We focus on the study of multigrid methods with aggressive coarsening and polynomial smoothers for the solution of the linear systems corresponding to finite difference/element discretizations of the Laplace equation. Using local Fourier analysis we determine automatically the optimal values for the parameters involved in defining the polynomial smoothers and achieve fast convergence of cycles with aggressive coarsening. We also present numerical tests supporting the theoretical results and the heuristic ideas. The methods we introduce are highly parallelizable and efficient multigrid algorithms on structured and semi-structured grids in two and three spatial dimensions.  相似文献   

7.
We consider the Fourier analysis of multigrid methods (of Galerkin type) for symmetric positive definite and semi-positive definite linear systems arising from the discretization of scalar partial differential equations (PDEs). We relate the so-called smoothing factor to the actual two-grid convergence rate and also to the convergence rate of the V-cycle multigrid. We derive a two-sided bound that defines an interval containing both the two-grid and V-cycle convergence rate. This interval is narrow and away from 1 when both the smoothing factor and an additional parameter are small enough. Besides the smoothing factor, the convergence mainly depends on the angle between the range of the prolongation and the eigenvectors of the system matrix associated with small eigenvalues. Nice V-cycle convergence is guaranteed if the tangent of this angle has an upper bound proportional to the eigenvalue, whereas nice two-grid convergence requires a bound proportional to the square root of the eigenvalue. We also discuss the well-known rule which relates the order of the prolongation to that of the differential operator associated to the problem. We first define a frequency based order which in most cases amounts to the so-called high frequency order as defined in Hemker (J Comput Appl Math 32:423–429, 1990). We give a firmer basis to the related order rule by showing that, together with the requirement of having the smoothing factor away from one, it provides necessary and sufficient conditions for having the two-grid convergence rate away from 1. A stronger condition is further shown to be sufficient for optimal convergence with the V-cycle. The presented results apply to rigorous Fourier analysis for regular discrete PDEs, and also to local Fourier analysis via the discussion of semi-positive systems as may arise from the discretization of PDEs with periodic boundary conditions.  相似文献   

8.
In this paper, multigrid methods with residual scaling techniques for symmetric positive definite linear systems are considered. The idea of perturbed two-grid methods proposed in [7] is used to estimate the convergence factor of multigrid methods with residual scaled by positive constant scaling factors. We will show that if the convergence factors of the two-grid methods are uniformly bounded by σ (σ<0.5), then the convergence factors of the W-cycle multigrid methods are uniformly bounded by σ/(1−σ), whether the residuals are scaled at some or all levels. This result extends Notay’s Theorem 3.1 in [7] to more general cases. The result also confirms the viewpoint that the W-cycle multigrid method will converge sufficiently well as long as the convergence factor of the two-grid method is small enough. In the case where the convergence factor of the two-grid method is not small enough, by appropriate choice of the cycle index γ, we can guarantee that the convergence factor of the multigrid methods with residual scaling techniques still has a uniform bound less than σ/(1−σ). Numerical experiments are provided to show that the performance of multigrid methods can be improved by scaling the residual with a constant factor. The convergence rates of the two-grid methods and the multigrid methods show that the W-cycle multigrid methods perform better if the convergence rate of the two-grid method becomes smaller. These numerical experiments support the proposed theoretical results in this paper.  相似文献   

9.
Multigrid and related multilevel methods are the approaches of choice for solving linear systems that result from discretization of a wide class of PDEs. A large gap, however, exists between the theoretical analysis of these algorithms and their actual performance. This paper focuses on the extension of the well‐known local mode (often local Fourier) analysis approach to a wider class of problems. The semi‐algebraic mode analysis (SAMA) proposed here couples standard local Fourier analysis approaches with algebraic computation to enable analysis of a wider class of problems, including those with strong advective character. The predictive nature of SAMA is demonstrated by applying it to the parabolic diffusion equation in one and two space dimensions, elliptic diffusion in layered media, as well as a two‐dimensional convection‐diffusion problem. These examples show that accounting for boundary conditions and heterogeneity enables accurate predictions of the short‐term and asymptotic convergence behavior for multigrid and related multilevel methods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
So far there has been no analysis of multigrid methods applied to singularly perturbed Dirichlet boundary-value problems. Only for periodic boundary conditions does the Fourier transformation (mode analysis) apply, and it is not obvious that the convergence results carry over to the Dirichlet case, since the eigenfunctions are quite different in the two cases. In this paper we prove a close relationship between multigrid convergence for the easily analysable case of periodic conditions and the convergence for the Dirichlet case.  相似文献   

11.
Summary. We consider the fast solution of a class of large, piecewise smooth minimization problems. For lack of smoothness, usual Newton multigrid methods cannot be applied. We propose a new approach based on a combination of convex minization with constrained Newton linearization. No regularization is involved. We show global convergence of the resulting monotone multigrid methods and give polylogarithmic upper bounds for the asymptotic convergence rates. Efficiency is illustrated by numerical experiments. Received March 22, 1999 / Revised version received February 24, 2001 / Published online October 17, 2001  相似文献   

12.
Since their popularization in the late 1970s and early 1980s, multigrid methods have been a central tool in the numerical solution of the linear and nonlinear systems that arise from the discretization of many PDEs. In this paper, we present a local Fourier analysis (LFA, or local mode analysis) framework for analyzing the complementarity between relaxation and coarse‐grid correction within multigrid solvers for systems of PDEs. Important features of this analysis framework include the treatment of arbitrary finite‐element approximation subspaces, leading to discretizations with staggered grids, and overlapping multiplicative Schwarz smoothers. The resulting tools are demonstrated for the Stokes, curl–curl, and grad–div equations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
For the numerical solution of time‐dependent partial differential equations, time‐parallel methods have recently been shown to provide a promising way to extend prevailing strong‐scaling limits of numerical codes. One of the most complex methods in this field is the “Parallel Full Approximation Scheme in Space and Time” (PFASST). PFASST already shows promising results for many use cases and benchmarks. However, a solid and reliable mathematical foundation is still missing. We show that, under certain assumptions, the PFASST algorithm can be conveniently and rigorously described as a multigrid‐in‐time method. Following this equivalence, first steps towards a comprehensive analysis of PFASST using blockwise local Fourier analysis are taken. The theoretical results are applied to examples of diffusive and advective type.  相似文献   

14.
We design and analyze V‐cycle multigrid methods for an H(div) problem discretized by the lowest‐order Raviart–Thomas hexahedral element. The smoothers in the multigrid methods involve nonoverlapping domain decomposition preconditioners that are based on substructuring. We prove uniform convergence of the V‐cycle methods on bounded convex hexahedral domains (rectangular boxes). Numerical experiments that support the theory are also presented.  相似文献   

15.
张林波 《计算数学》1996,18(1):12-23
求解不可压Navier-Stokes方程的SCGS迭代法的光滑因子张林波(中国科学院计算数学与科学工程计算研究所科学与工程计算国家重点实验室)EVALUATIONOFSMOOTHINGFACTOROFTHESCGSITERATIONFORINCOMP...  相似文献   

16.
This paper addresses numerical computation of time‐periodic diffusion equations with fractional Laplacian. Time‐periodic differential equations present fundamental challenges for numerical computation because we have to consider all the discrete solutions once in all instead of one by one. An idea based on the diagonalization technique is proposed, which yields a direct parallel‐in‐time computation for all the discrete solutions. The major computation cost is therefore reduced to solve a series of independent linear algebraic systems with complex coefficients, for which we apply a multigrid method using the damped Richardson iteration as the smoother. Such a linear solver possesses mesh‐independent convergence factor, and we make an optimization for the damping parameter to minimize such a constant convergence factor. Numerical results are provided to support our theoretical analysis.  相似文献   

17.
Summary. We derive globally convergent multigrid methods for discrete elliptic variational inequalities of the second kind as obtained from the approximation of related continuous problems by piecewise linear finite elements. The coarse grid corrections are computed from certain obstacle problems. The actual constraints are fixed by the preceding nonlinear fine grid smoothing. This new approach allows the implementation as a classical V-cycle and preserves the usual multigrid efficiency. We give estimates for the asymptotic convergence rates. The numerical results indicate a significant improvement as compared with previous multigrid approaches. Received March 26, 1994 / Revised version received September 22, 1994  相似文献   

18.
A mesh-independent, robust, and accurate multigrid scheme to solve a linear state-constrained parabolic optimal control problem is presented. We first consider a Lavrentiev regularization of the state-constrained optimization problem. Then, a multigrid scheme is designed for the numerical solution of the regularized optimality system. Central to this scheme is the construction of an iterative pointwise smoother which can be formulated as a local semismooth Newton iteration. Results of numerical experiments and theoretical two-grid local Fourier analysis estimates demonstrate that the proposed scheme is able to solve parabolic state-constrained optimality systems with textbook multigrid efficiency.  相似文献   

19.
In this paper, we study a nonlinear multigrid method for solving a general image denoising model with two L 1-regularization terms. Different from the previous studies, we give a simpler derivation of the dual formulation of the general model by augmented Lagrangian method. In order to improve the convergence rate of the proposed multigrid method, an improved dual iteration is proposed as its smoother. Furthermore, we apply the proposed method to the anisotropic ROF model and the anisotropic LLT model. We also give the local Fourier analysis (LFAs) of the Chambolle’s dual iterations and a modified smoother for solving these two models, respectively. Numerical results illustrate the efficiency of the proposed method and indicate that such a multigrid method is more suitable to deal with large-sized images.  相似文献   

20.
A mesh-independent and second-order accurate multigrid strategy to solve control-constrained parabolic optimal control problems is presented. The resulting algorithms appear to be robust with respect to change of values of the control parameters and have the ability to accommodate constraints on the control also in the limit case of bang-bang control. Central to the development of these multigrid schemes is the design of iterative smoothers which can be formulated as local semismooth Newton methods. The design of distributed controls is considered to drive nonlinear parabolic models to follow optimally a given trajectory or attain a final configuration. In both cases, results of numerical experiments and theoretical twogrid local Fourier analysis estimates demonstrate that the proposed schemes are able to solve parabolic optimality systems with textbook multigrid efficiency. Further results are presented to validate second-order accuracy and the possibility to track a trajectory over long time intervals by means of a receding-horizon approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号