首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 153 毫秒
1.
Abstract Effects on lens physiology of UVB and UVA used separately and sequentially were investigated using 4 week old rabbit lenses in organ culture. Narrowband UVB at 0.3 J/cm2= joules/lens (1 h exposure) has little effect on sodium and calcium concentrations in the lens interior or transparency of lenses subsequently cultured for 20 h after a 1 h exposure. With an incident energy of 3 J/cm2 of broadband UVB (295–330 nm), lenses become opaque and slightly swollen with significant ion imbalances during culture over a 1 day period. In contrast, lenses exposed to approximately 6–24 J/cm2 of UVA (330–400 nm) remain transparent after 1 day of culture. Extended culture up to 4 days reveals no signs of opacification. Ion homeostasis and normal lens hydration are also maintained in UVA-irradiated lenses. The presence of 95% oxygen during UVA irradiation is also without effect. Broadband UVA irradiation is damaging, however, if lenses are first exposed to subthreshold doses of narrowband UVB (307 ± 5 nm) irradiation, viz . 0.3 J/cm2. Thus, sequential UVB/UVA irradiation at subthreshold doses causes impaired active cation transport and accumulation of sodium and calcium accompanying lens opacification.  相似文献   

2.
Changes in the accumulation of cAMP levels were measured by the isotope dilution assay using protein kinase A in the lichen Evernia prunastri at varying light conditions. cAMP levels decreased following exposure to low irradiance (20 μmol quanta m−2 s−1, and below the compensation point for photosynthesis) of red light (600–710-nm wave length) and increased by 50% after far-red light illumination (15 μmol quanta m−2 s−1, 710–800-nm wavelength). Far-red partially reverted the effect of red light when the former was supplied after the latter. cAMP increased to its maximum level under high irradiance supplied by a non-photomorphogenic yellow light source (400 μmol quanta m−2 s−1, reaching photosynthetic saturation). The addition of small quantities of red and far-red light, however, had profound restricting effects on cAMP accumulation. The addition of inhibitors of electron transport chains did not promote any significant change in cAMP levels in any of the treatments, indicating that cAMP accumulation could not depend on ATP synthesis. We propose that the response of cAMP accumulation at low irradiance comprises the activation of a morphogenic pathway through a red/far-red photoreceptor. In addition, at high irradiance the response would occur most likely through photosystems II and I acting as sensors of light quantity, that can be strongly modified by the red/far-red photomorphogenic system. Thus, cAMP would be involved in sensing the overall light environment.  相似文献   

3.
SENSITIVITY OF MONONUCLEAR CELLS TO UV RADIATION   总被引:2,自引:0,他引:2  
Abstract—The viability of peripheral blood mononuclear cells, as measured by trypan blue dye exclusion, is decreased by exposure to UV radiation in vitro . The toxicity of the UV radiation is doseand wavelength-dependent; UVC is approximately 10 times more effective than UVB and 105 times more effective than UVA.  相似文献   

4.
Abstract— The purpose of this study was to evaluate the role of altered calcium homeostasis in the development of irreversible membrane damage in the UVB-irradiated ocular lens. In particular, experiments were designed to determine whether restricting calcium influx could prevent membrane damage that typically leads to ion imbalances and lens opacification following short-term exposure to ultraviolet light (UVB). The influx of calcium was reduced by culturing lenses in a low-calcium culture medium containing 0.3 mM Ca2+ rather than physiological concentrations of 1.6 mM. This low-calcium protocol retarded calcium accumulation in UVB-irradiated lenses for 2 days of culture, and opacification was delayed by 24 h. Loss of transparency did occur during the second day of culture, but more slowly than in irradiated lenses cultured in normal-calcium medium. Membrane damage was assessed by evaluating loss in cation transport activity, assessed by measuring 86Rb uptake into cultured lenses. Uptake was markedly inhibited in UVB-irradiated lenses and low-calcium culture did not prevent this inhibition of cation transport, a finding that explains why low-calcium protocol did not help maintain sodium homeostasis in irradiated lenses. Inhibition of cation transport and sodium accumulation eventually caused lens hydration and light scattering during extended culture in the absence of significant calcium elevation. Additional experiments were done to establish whether initial damage sustained by membranes could be repaired through the biosynthesis of new membrane proteins. Incorporation of 14C-histidine in membranes of the UVB-exposed lens was measured to assess membrane synthesis essential for repairing membrane damage. The rate of membrane protein synthesis, assessed by measuring incorporation of labeled amino acids, declined in UVB cataract, despite the prevention of calcium accumulation. These results suggest that one explanation for irreversible gain in sodium and calcium content accompanying opacification is the inability of lenses to replenish damaged membrane proteins comprising ion channels or transporters.  相似文献   

5.
The phototoxicity of ultraviolet A (UVA) alone and UVA plus ultraviolet B (UVB) combined on cultured porcine lenses was investigated by analyzing cellular function as measured with a fluorescence bioassay approach and optical integrity, in terms of sharpness of the lens focus as measured with a scanning laser system. The bioassay consisted of carboxyfluorescein diacetate-acetoxymethyl ester and alamarBlue fluorescent dyes. Aseptically dissected porcine lenses were maintained in modified medium 199 without phenol red supplemented with 1% penicillin-streptomycin and 4% porcine serum. At 1 week of preincubation, baseline measurements were obtained. Then the lenses were treated with single exposures of different UVA and UVB energy levels. The lenses treated with 86 J/cm2 UVA alone showed a significant (P < 0.05) decrease in cellular and optical integrity at 48 h after exposure, whereas those treated with 43 J/cm2 UVA alone did not show significant phototoxic effect. Lenses treated with 15.63 J/cm2 UVA plus 0.019 J/cm2 UVB combined showed significant adverse effects beginning from 48 h after exposure. Also, there was no recovery. These findings show that a high UVA dose alone and relatively low UVA in combination with low UVB radiant exposure can impair lens cellular and optical functions, respectively.  相似文献   

6.
We examined the effects of UV radiation (UVR) on metabolic rates of the freshwater cladoceran Daphnia catawba. We exposed D. catawba to UVB for 12 h in a lamp phototron at levels of 2.08 and 4.16 kJ m(-2) both with and without concomitant exposure to UVA and visible photorepair radiation (PRR). We also included a group that received PRR only and a dark control group. Respiration rates were measured for 6 h following exposure. Respiration rates increased by 31.8% relative to the dark control at the lowest level of UVB stress (2.08 kJ m(-2) UVB with PRR), whereas respiration was inhibited by 70.3% at the highest stress level (4.16 kJ m(-2) UVB without PRR). Survival rates in the group that received PRR only and the group exposed to 2.08 kJ m(-2) and PRR were not significantly different from that in the control group; however, the survival rate was reduced for all other UVR exposures. We hypothesize that enhanced respiration rates reflect energetic costs related to repair of cellular components damaged by sublethal levels of UVR. Increases in respiration rate of the magnitude we found in our experiment could significantly reduce energetic reserves available for growth and reproduction, especially in cases where these costs are incurred repeatedly during a series of days with high levels of UVR.  相似文献   

7.
The changes in structural organization of the major light-harvesting chlorophyll a/b–protein complex of photosystem II (LHC II) at the level of trimeric subcomplexes were studied in spinach plants grown under low light conditions (50 μmol quanta m−2 s−1) and then acclimated to elevated irradiances. By monitoring photochemical quenching of fluorescence yield (qP), photosystem II (PS II) functional status was assessed in leaves of plants acclimated to a range of elevated irradiances. Three separate acclimative irradiances were selected for the experiments, reflecting: limiting light conditions (150 μmol quanta m−2 s−1), near to the inflexion point on the irradiance curve conditions (300 μmol quanta m−2 s−1) and an excessive light, causing a moderate stress in the form of down regulation of PS II (450 μmol quanta m−2 s−1). An immunoblot analysis showed that there was a clear decline in an abundance on chlorophyll basis of Lhcb1-3 apoproteins as an acclimative irradiance increased from 50 to 450 μmol quanta m−2 s−1, with Lhcb1 decreasing to a lesser extent than Lhcb2 and Lhcb3 (only at excessive irradiance). When analyzed by non-denaturing isoelectric focusing BBY membrane fragments (PSII-enriched, stacked thylakoid membranes) isolated from low light-grown plants were resolved into nine fractions, seven of which (labelled 3–9) were established by us previously [Jackowski and Pielucha, J. Photochem. Photobiol. B: Biol. 64 (2001) 45] to be LHC II subcomplexes representing mixed populations of closely similar trimers, comprising permutations of Lhcb1 and Lhcb2 (subcomplexes 3–7) or Lhcb1-3 (subcomplexes 8 and 9). A heterogeneity with regard to accumulation behaviour of LHC II subcomplexes in response to elevated irradiances was revealed. The subcomplexes 5 and 6 were accumulating at similar level, regardless of the light irradiance experienced. Another group consisting of the subcomplexes 3 and 4 (the most basic ones) showed a progressive increase in relative abundance with increasing an irradiance intensity whereas the subcomplexes 7–9 (the most acidic ones) exhibited a progressive decline in their relative abundance during an acclimation of spinach plants to elevated irradiances thus they may collectively represent an elevated irradiance-responsive subunit of LHCII.  相似文献   

8.
Photoreactivation (PR) is an efficient survival mechanism that helps protect cells against the harmful effects of solar-ultraviolet (UV) radiation. The PR mechanism involves photolyase, just one enzyme, and can repair DNA damage, such as cyclobutane-pyrimidine dimers (CPD) induced by near-UV/blue light, a component of sunlight. Although the balance of near-UV/blue light and far-UV light reaching the Earth's surface could be altered by the atmospheric ozone layer's depletion, experiments simulating this environmental change and its possible effects on life have not yet been performed. To quantify the strength of UVB in sunlight reaching the Earth's surface, we measured the number of CPD generated in plasmid DNA after UVB irradiation or exposure to sunlight. To simulate the increase of solar-UV radiation resulting from the ozone layer depletion, Paramecium tetraurelia was exposed to UVB and/or sunlight in clear summer weather. PR recovery after exposure to sunlight was complete at a low dose rate of 0.2 J/m2 x s, but was less efficient when the dose rate was increased by a factor of 2.5 to 0.5 J/m2 x s. It is suggested that solar-UV radiation would not influence the cell growth of P. tetraurelia for the reason of high PR activity even when the ozone concentration was decreased 30% from the present levels.  相似文献   

9.
The UVB (280-315 nm)- and UVA1 (340-400 nm)-induced migration of Langerhans cells (LC) from the epidermis and accumulation of dendritic cells (DC) in the lymph nodes draining the exposed skin site of C3H/HeN mice have been investigated. One minimum erythemal dose (MED) of UVB (1.5 kJ/m2) and of UVA1 (500 kJ/m2) were chosen, which have been shown previously to suppress delayed hypersensitivity (DTH). UVB irradiation resulted in a reduction in epidermal LC numbers, local to the site of the exposure, which was most apparent 12 h after exposure, but, in contrast, UVA1 had no significant effect even at 72 h after exposure. UVA1 did not exert any protection against the UVB-mediated depletion in LC numbers. The reduction in local LC following UVB exposure was prevented by systemic (intraperitoneal) treatment of mice with neutralising antibodies to either tumor necrosis factor (TNF)-alpha or interleukin (IL)-beta 2 h prior to the irradiation. It has been reported previously that UVB exposure caused an increase in the number of dendritic cells (DC) in the lymph nodes draining the irradiated skin site. In the present study we have shown that UVA1 had a similar effect. Pretreatment of the mice with neutralising antibodies to IL-1beta (by intraperitoneal injection) substantially inhibited DC accumulation induced by both UV regimens. However, anti-TNF-alpha antibodies affected only the UVB-induced increase, and did not alter the elevation in DC numbers observed following UVA1 exposure. These results indicate that UVB causes the migration of LC from the epidermis and an accumulation of DC in the draining lymph nodes by a mechanism that requires both TNF-alpha and IL-1beta. In contrast, UVAI does not cause LC migration from the epidermis and the accumulation of DC in the draining lymph nodes observed following UVA1 exposure requires IL-1beta, but not TNF-alpha. It is likely therefore that UVA1 acts through a different mechanism from UVB and may target a cutaneous antigen presenting cell other than LC, such as the dermal DC.  相似文献   

10.
Li Y  Pradhan NK  Foley R  Low GK 《Talanta》2002,57(6):1143-1153
A new method for determining ultra-trace levels of hexavalent chromium in ambient air has been developed. The method involves a 24-h sampling of air into potassium hydroxide solution, followed by silica gel column separation of chromium (VI), then preconcentration by complexation and solvent extraction. The chromium (VI) complex was dissolved in nitric acid. The resultant chromium ions were determined by inductively coupled plasma mass spectrometry (ICP–MS) using a dynamic reaction cell (DRC) with ammonia as the reactive gas to reduce polyatomic interferences. The interconversion of chromium in potassium hydroxide solution and air sample matrix were investigated under ambient conditions. It was found that there was no conversion of chromium (VI) into chromium (III) species. However, it was observed that some chromium (III) species were converted into chromium (VI) species. For a KOH solution containing 100 μg l−1 of chromium (III) species, the rate of conversion was found to be 3% after 24 h exposure, 8% after 48 h, 10% after 72 h and no further conversion was observed thereafter. However, in a solution containing air sample matrix, 9.3% of chromium (III) converted to chromium (VI) within 6 h, and during the course of a 11-day exposure period, 13% (range 8–17%) of chromium (III) converted to chromium (VI). The method detection limit (MDL) for chromium (VI) in potassium hydroxide solution (0.025 M) was found to be 2×10−2 μg l−1. This is equivalent to 0.2 ng m−3 (for 23 m3 air sampled into 200 ml of KOH solution over a 24-h period). The recovery of spiked chromium (VI) from solutions containing air sample matrix was 95±9% (n=8). Matrix related interferences were estimated to be less than 10% based on recovery studies. The concentration of airborne chromium (VI) in Sydney residential areas was found to be less than 0.2 ng m−3, however, in industrial areas the concentrations ranged from 0.2 to 1.3 ng m−3 using this analytical procedure.  相似文献   

11.
12.
The effects of stable vitamin C, magnesium-L-ascorbyl-2-phosphate (MAP), administered after acute and chronic exposure to UVB irradiation were investigated using hairless mice. Intraperitoneal administration of 100 mg/kg of MAP immediately after acute exposure to 15 kJ/m2 of UVB significantly prevented increases of UVB-induced lipid peroxidation in skin and sialic acid in serum, an inflammation marker. Administration of 50 mg/kg of MAP immediately after each exposure significantly delayed skin tumor formation and hyperplasia induced by chronic exposure to 2 kJ/m2 of UVB. Intraperitoneal administration of 200 mg/kg of MAP produced an increase in ascorbic acid (As) levels in the serum, liver and skin within 15 min. Serum As levels quickly returned to normal, but hepatic and cutaneous levels remained elevated before returning to normal after 24 h, suggesting that MAP was converted to As in the serum and in those tissues. Ultraviolet B-induced hydroxyl radical generation in murine skin homogenates was scavenged by As-Na addition, which was directly detected by electron spin resonance (ESR). These results suggest that postadministration of MAP delays progression of skin damage induced by UVB irradiation. It is presumed that MAP, once converted to As, exhibits such inhibitory effects by scavenging hydroxyl and lipid radicals generated as a direct or indirect result of UVB exposure.  相似文献   

13.
The thermal stability of UVB irradiated collagen in bovine lens capsules and in bovine cornea has been investigated by differential scanning calorimetry (DSC). During UVB irradiation the lens capsules and cornea were immersed in water to keep the collagen in a fully hydrated condition at all times. UV irradiation induced changes in collagen which caused both stabilization and destabilization of the collagen structure. The helix-coil transition for non-irradiated collagen in cornea occurred near 66 degrees C, instead for the irradiated one for 3h it occurred at 69 degrees C. After irradiating for longer times (20-96h) the helix-coil transition peak occurred at much lower temperatures. The peak was very broad and suggested that collagen was reduced by UV to different polypeptides of different molecular weight and different lower thermal stabilities. The irradiation of lens capsules with UVB light in vitro resulted in changes in the thermal properties of type-IV collagen consistent with increased cross-linking. DSC of lens capsules showed two major peaks at melting temperatures at 54 degrees C Tm1 and 78 degrees C Tm2, which can be attributed to the denaturation of the triple helix and 7S domains, respectively. UVB irradiation of lens capsules in vitro for 6 h caused an increase in Tm1 from 54 to 57 degrees C. The higher temperature required to denature the type-IV collagen after irradiation in vitro suggested an increase of intermolecular cross-linking.  相似文献   

14.
A Si(IV)-phthalocyanine bearing two methoxyethyleneglycol axial ligands bound to the central metal ion (SiPc) has been prepared by chemical synthesis and analyzed for its phototherapeutic activity after administration in a Cremophor or liposome formulation to C57B1/6 mice bearing a subcutaneously transplanted Lewis lung carcinoma (LLC). The maximum drug accumulation in the tumor is found at 24 h after intraperitoneal injection, independent of the delivery system. However, the tumor concentration of SiPc in the Cremophor formulation is about two-fold higher, while the drug concentration in liver and skin shows similar trends with the two delivery systems. The drug accumulation and retention in the brain is much larger when using Cremophor emulsion. Photodynamic therapy (672 nm, 370 mW m−2, 360 J cm−2) at 24 h after the injection of Cremophor emulsion- or DPPC liposome-formulated SiPc causes a very efficient and similar response for the LLC (8 versus 22 mm mean tumor diameter for the control groups at 21 days after phototreatment). These very promising effects, obtained both at higher and lower tumor drug concentrations, clearly demonstrate the potential phototherapeutical activity of the newly synthesized SiPc.  相似文献   

15.
Stable trichloro-octadecyl silane (ODS) derivatives of a 5 nm γ-alumina ceramic membrane were prepared. Gas permeabilities of the untreated membrane did not show Knudsen diffusion at 20°C. Gas permeabilities of the ODS membrane were three orders of magnitude lower; He, Ne, Ar, CO2, C3H8 have near constant permeabilities 360 mol s−1 m−2 bar−1, except methane which has the highest permeability of the group, 481 mol s−1 m−2 bar−1. The mechanism of diffusion is solution/diffusion. Remarkably, permeabilities of ODS-alumina membrane were reduced by 5 X after exposure to a pressure difference of 1 atm (active layer side) against vacuum for only 10 min. The effect was metastable but could be reversed on standing for several hours, reversal of pressure difference or after washing with (hydrocarbon solvent) toluene. The mechanism was presumed to be due to movement of the octadecyl-hydrocarbon chains of the silane monolayer causing a partially blocked pore structure; perhaps a unique example of self-fouling.  相似文献   

16.
Conidia are responsible for reproduction, dispersal, environmental persistence and host infection of many fungal species. One of the main environmental factors that can kill and/or damage conidia is solar UV radiation. Cyclobutane pyrimidine dimers (CPD) are the major DNA photoproducts induced by UVB. We examined the conidial germination kinetics and the occurrence of CPD in DNA of conidia exposed to different doses of UVB radiation. Conidia of Aspergillus fumigatus, Aspergillus nidulans and Metarhizium acridum were exposed to UVB doses of 0.9, 1.8, 3.6 and 5.4 kJ m−2. CPD were quantified using T4 endonuclease V and alkaline agarose gel electrophoresis. Most of the doses were sublethal for all three species. Exposures to UVB delayed conidial germination and the delays were directly related both to UVB doses and CPD frequencies. The frequencies of dimers also were linear and directly proportional to the UVB doses, but the CPD yields differed among species. We also evaluated the impact of conidial pigmentation on germination and CPD induction on Metarhizium robertsii. The frequency of dimers in an albino mutant was approximately 10 times higher than of its green wild-type parent strain after exposure to a sublethal dose (1.8 kJ m−2) of UVB radiation.  相似文献   

17.
Carbon fixation in Antarctic nanoflagellates dominated by cryptomonads collected during a summer cruise in 1995 decreased after short-term exposition (3 h) under both UVA and UVA + UVB radiation compared to white light. The dose applied with artificial lamps was within the range of the natural UV radiation measured at the surface during the cruise. The depletion of C fixation was higher after UVA + UVB than after UVA alone. The inhibition of carbon fixation in the laboratory depended on the time of sample collection and, consequently, on the UV dose received in the natural environment before sampling. Thus, the cells collected in the morning showed 82% of inhibition by UVA + UVB but that collected at noon showed only 72%. The same effect was observed by UVA: 72% of inhibition in the morning samples and 62% at noon. Thus, photoprotection mechanisms seem to be operating during the day protecting the cells against a rise in UV radiation. Red fluorescence (attributed to chlorophyll) per cell, as determined by flow cytometry, was not affected by UV, however, orange fluorescence (attributed to phycoerythrin) increased clearly after UV radiation compared to that in white light. The increment of orange fluorescence was higher after UVA than after UVA + UVB radiation. The rapid increase in fluorescence emission could be due to an uncoupling of energy transfer and it is suggested as a protective mechanism against UV radiation by absorbing UV radiation.  相似文献   

18.
Abstract— Exposure of skin to UV radiation can cause diverse biological effects, including induction of inflammation, alteration in cutaneous immune cells and impairment of contact hypersensitivity (CHS) responses. Our laboratory has demonstrated that oral feeding as well as topical application of a poly-phenolic fraction isolated from green tea (GTP) affords protection against the carcinogenic effects of UVB (280–320 nm) radiation. In this study, we investigated whether GTP could protect against UVB-induced immunosuppression and cutaneous inflammatory responses in C3H mice. Immunosuppression was assessed by contact sensitization with 2,4-dinitrofluorobenzene applied to UVB-irradiated skin (local suppression) or to a distant site (systemic suppression), while double skin-fold swelling was used as the measure of UVB-induced inflammation. Topical application of GTP (1–6 mg/animal), 30 min prior to or 30 min after exposure to a single dose of UVB (2 kj/m2) resulted in significant protection against local (25–90%) and systemic suppression (23–95%) of CHS and inflammation in mouse dorsal skin (70–80%). These protective effects were dependent on the dose of GTP employed; increasing the dose (1–6 mg/animal) resulted in an increased protective effect (25–93%). The protective effects were also dependent on the dose of UVB (2–32 kJ/m2). Among the four major epicatechin derivatives present in GTP, (‐)-epigallocatechin-3-gallate, the major constituent in GTP, was found to be the most effective in affording protection against UVB-caused CHS and inflammatory responses. Our study suggests that green tea, specifically polyphenols present therein, may be useful against inflammatory dermatoses and immunosuppression caused by solar radiation.  相似文献   

19.
This study investigated the effects of radiation (PAR+UVA+UVB) on the development and growth rates (GRs) of young gametophytes of Gelidium floridanum. In addition, photosynthetic pigments were quantified, carotenoids identified, and photosynthetic performance assessed. Over a period of 3 days, young gametophytes were cultivated under laboratory conditions and exposed to photosynthetically active radiation (PAR) at 80 μmol photons m?2 s?1 and PAR+UVA (0.70 W m?2)+UVB (0.35 W m?2) for 3 h per day. The samples were processed for light and electron microscopy to analyze the ultrastructure features, as well as carry out metabolic studies of GRs, quantify the content of photosynthetic pigments, identify carotenoids and assess photosynthetic performance. PAR+UVA+UVB promoted increase in cell wall thickness, accumulation of floridean starch grains in the cytoplasm and disruption of chloroplast internal organization. Algae exposed to PAR+UVA+UVB also showed a reduction in GR of 97%. Photosynthetic pigments, in particular, phycoerythrin and allophycocyanin contents, decreased significantly from UV radiation exposure. This result agrees with the decrease in photosynthetic performance observed after exposure to ultraviolet radiation, as measured by a decrease in the electron transport rate (ETR), where values of ETRmax declined approximately 44.71%. It can be concluded that radiation is a factor that affects the young gametophytes of G. floridanum at this stage of development.  相似文献   

20.
The potential to induce non-nuclear changes in mammalian cells has been examined for (1) UVA1 radiation (340–400 nm, UVASUN 2000 lamp), (2) UVA + UVB (peak at 313 nm) radiation (FS20 lamp), and (3) UVC (254 nm) radiation (GI5T8 lamp). The effects of irradiation were monitored in vitro using three strains of L5178Y (LY) mouse lymphoma cells that markedly differ in sensitivity to UV radiation. Comparisons were made for the effects of approximately equitoxic fluences that reduced cell survival to 1–15%. Depending on the cell strain, the fluences ranged from 830 to 1600 kJ/m2 for the UVASUN lamp, 75 to 390 J/m2 for the FS20 lamp and 3.8 to 17.2 J/m2 for the G15T8 lamp. At the exposure level used in this study, irradiation with the UVASUN, but not the FS20 or G15T8, lamp induced a variety of non-nuclear changes including damage to cytoplasmic organelles and increased plasma membrane permeability and cell lysis. Cell lysis and membrane permeabilization were induced by the UVA1 emission of the UVASUN lamp, but not by its visible + IR components (>400 nm). The results show that the plasma membrane and other organelles of LY cells are highly sensitive to UVA1 but not to UVB or UVC radiation. Also UVA1, but not UVB or UVC radiation, causes rapid and extensive lysis of LY cells. In conclusion, non-nuclear damage contributes substantially to UVA cytotoxicity in all three strains of LY cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号