首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
分子印迹聚合物选择性富集长春碱的研究   总被引:1,自引:0,他引:1  
分子印迹聚合物(MIPs)是近年来发展起来的一种对特定分子(模板分子)具有高度选择性的合成高分子材料.本文以长春碱(VLB)为模板分子,以甲基丙烯酸(MAA)为功能单体、乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,在偶氮二异丁腈(AIBN)的引发下制备了长春碱印迹聚合物(VLB-MIP).采用紫外光谱对VLB与MAA之间形成的模板-功能单体复合物进行了分析,通过扫描电镜(SEM)对制备的VLB-MIP的表面形态进行了表征,并用BET法对MIP表面的孔径进行了测定.结果表明,VLB-MIP与未加模板分子制备的非印迹聚合物(NIP)相比表面多孔、粗糙,比表面积显著增加.以VLB-MIP作为固相萃取(SPE)的吸附剂,对VLB-MIP的选择性进行了评价,VLB-MIP能特异性地吸附VLB,而对VLB的结构类似物长春新碱(VCR)却没有表现出明显的吸附行为.将长春花提取物上样于填充VLB-MIP的SPE柱上,在最优实验条件下,长春花提取物中的VLB能被高效富集.此外,上样溶剂对MIP柱的吸附容量有影响,长春花提取物溶于非极性溶剂甲苯时,MIP的吸附容量最大为750μg/g,其次是氯仿吸附容量为625μg/g,最小的是甲醇为250μg/g.  相似文献   

2.
Molecularly imprinted polymers (MIPs) are tailor-made polymers with high selectivity for the template molecule. This selectivity arises from the synthetic procedure followed to prepare the MIP. In this work, the influence of process parameters on the preparation of vinblastine (VLB) imprinted polymers was presented. In the procedure of polymerization, VLB (0.1 mmol) was used as the template molecule and a commonly used initiator, azobisisobutyronitrile (AIBN), was employed to initiate the reaction at 60 °C. The influence of the following parameters was investigated: the moles of functional monomer (MAA, 0.3-1.0 mmol), the moles of cross-linker (EDMA, 1.5-5.0 mmol) and the porogenic solvent (toluene or acetonitrile). A mathematical method of uniform design was applied to optimize these selected parameters in order to increase the selectivity of MIP for template molecule. The experimental data were analyzed to obtain the regression model and the optimal conditions were achieved by optimization with uniform design software. The MIP was synthesized under the optimal conditions that 1.0 mmol of MAA and 5.0 mmol of EDMA copolymerized in toluene in the presence of 0.1 mmol of VLB. After removal of the template molecule, the obtained MIP was then employed as the sorbents of solid-phase extraction (SPE) to separate VLB from Catharanthus roseus extract. The results showed that the polymer exhibited high affinity to the template molecule and could separate and enrich VLB from C. roseus extract effectively. The recovery of VLB on the optimal MIP was 89.00%, which agreed closely with the predicted recovery. Therefore it is possible to further improve the nature of the polymer by optimizing the polymerization parameters with the method of uniform design.  相似文献   

3.
靳亚峰  陈娜  刘润强  陈军  柏连阳  张裕平 《色谱》2013,31(6):587-595
以橄榄醇为模板分子,α-甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,甲苯和十二醇为溶剂,通过本体聚合法制备了橄榄醇分子印迹聚合物。利用平衡结合实验、扫描电镜(SEM)及红外光谱(FTIR)对分子印迹聚合物(MIP)进行了表征,并用该聚合物进行了加标麦麸中橄榄醇的固相萃取(SPE)研究。平衡结合实验表明MIP对模板分子具有更好的识别性。Scatchard分析表明对橄榄醇分子的吸附存在2类不同结合位点,其中高亲和力结合位点和低亲和力结合位点的解离常数分别为0.021和1.002 mmol/L,相应的最大表观结合量分别为18.74和135.9 μmol/g。在优化的固相萃取条件下,MIP固相萃取柱对加标麦麸中橄榄醇的回收率达到97.8%~98.8%,相对标准偏差为2.8%~4.2%(n=5),线性范围为0.1~100 mg/L,检出限(S/N=3)为0.062 mg/L。与非印迹聚合物(NIP)柱及市售聚苯乙烯/二乙烯基苯(PLS)柱相比,MIP柱的选择性更强,回收率更高,纯化效果更好。  相似文献   

4.
Two molecularly imprinted polymers (MIP) for catharanthine and vindoline have been synthesized in order to specifically extract these natural indole alkaloids from Catharanthus roseus by solid-phase extraction (SPE). Each MIP was prepared by thermal polymerisation using catharanthine (or vindoline) as template, methacrylic acid (or itaconic acid) as functional monomer, ethylene glycol dimethacrylate (EDMA) as cross-linking agent and acetonitrile (or acetone) as porogenic solvent.For catharanthine-MIP, a SPE protocol (ACN–AcOH 99/1 washing and MeOH–AcOH 90/10 elution) allows a good MIP/NIP selectivity (imprinting factor 12.6). The specificity of catharanthine-MIP versus related bisindole alkaloids was assessed by cross-reactivity study. The catharanthine-MIP specifically retained catharanthine and its N-oxide analogue but displayed a weak cross-reactivity for other Vinca alkaloids (vinorelbine, vincristine, vinblastine, vindoline, vinflunine). It appears that the catharanthine-like unit of these molecules are hardly trapped in catharanthine cavities located in the MIP, probably due to the sterical hindrance of the vindoline moiety. Finally, the MIP-SPE applied to C. roseus extract enabled quantitative recovery of catharanthine (101%) and the total removal of vindoline. Its capacity was determined and was equal to 2.43 μmol g−1.Vindoline is a weaker base than catharanthine, so the vindoline-MIP was achieved with a strong acidic monomer (itaconic acid) to increase vindoline–monomer interactions and a modified washing solvent (ACN–HCOOH 99/1) to reduce non-specific interactions. The influence of the amount of HCOOH (protic modifier) percolated during the washing step upon the elution yield and the imprinting factor for vindoline was investigated. This preliminary optimisation of the washing step, and in particular the number of moles of acid percolated, seems useful to emphasize the use of MIP in conditions of high selectivity or high yield. A compromise was obtained with an imprinting factor equal to 7.6 and an elution recovery of 33%. However MIP-vindoline failed to achieve a specific extraction of vindoline since catharanthine was also extracted probably because of strong non-specific interactions occurring between catharanthine and the sorbent.  相似文献   

5.
A novel multi-templates molecularly imprinted polymer (MIP), using acidic pharmaceuticals mixture (ibuprofen (IBP), naproxen (NPX), ketoprofen (KEP), diclofenac (DFC), and clofibric acid (CA)) as the template, was prepared as solid-phase extraction (SPE) material for the quantitative enrichment of acidic pharmaceuticals in environmental samples and off-line coupled with liquid chromatography–mass spectrometry (LC/MS/MS). Washing solvent was optimized in terms of kind and volume for removing the matrix constituents nonspecifically adsorbed on the MIP. When 1 L of water sample spiked at 1 μg/L was loaded onto the cartridge, the binding capacity of the MIP cartridge were 48.7 μg/g for KEP, 60.7 μg/g for NPX, 52 μg/g for CA, 61.3 μg/g for DFC and 60.7 μg/g for IBP, respectively, which are higher than those of the commercial single template MIP in organic medium (e.g. toluene) reported in the literature. Recoveries of the five acidic pharmaceuticals extracted from 1 L of real water samples such as lake water and wastewater spiked at 1 μg/L were more than 95%. The recoveries of acidic pharmaceuticals extracted from 10-g sediment sample spiked at the 10 ng/g level were in the range of 77.4–90.6%. To demonstrate the potential of the MIP obtained, a comparison with commercial C18 SPE cartridge was performed. Molecularly imprinted solid-phase extraction (MISPE) cartridge showed higher recoveries than commercial C18 SPE cartridge for acidic pharmaceuticals. These results showed the suitability of the MISPE method for the selective extraction of a group of structurally related compounds such as acidic pharmaceuticals.  相似文献   

6.
A method employing molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE) to pretreat samples was developed. The polymers were prepared by precipitation polymerization with andrographolide as template molecule. The structure of MIP was characterized and its static adsorption capacity was measured by the Scatchard equation. In comparison with C(18)-SPE and non-imprinted polymer (NIP) SPE column, MIP-SPE column displays high selectivity and good affinity for andrographolide and dehydroandrographolide for extract of herb Andrographis paniculata (Burm.f.) Nees (APN). MIP-SPE column capacity was 11.9±0.6 μmol/g and 12.1±0.5 μmol/g for andrographolide and dehydroandrographolide, respectively and was 2-3 times higher than that of other two columns. The precision and accuracy of the method developed were satisfactory with recoveries between 96.4% and 103.8% (RSD 3.1-4.3%, n=5) and 96.0% and 104.2% (RSD 2.9-3.7%, n=5) for andrographolide and dehydroandrographolide, respectively. Various real samples were employed to confirm the feasibility of method. This developed method demonstrates the potential of molecularly imprinted solid phase extraction for rapid, selective, and effective sample pretreatment.  相似文献   

7.
以咖啡因作为模板分子,α-甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,制备了咖啡因分子印迹聚合物(MIP)。与非印迹聚合物(NIP)相比,MIP对咖啡因具有更高的吸附容量和选择性,MIP和NIP对咖啡因的最大静态吸附量分别为28.1和16.5mg/g,相对选择因子为1.25。以咖啡因分子印迹聚合物为固相萃取填料,结合高效液相色谱(HPLC),建立了茶水中咖啡因浓度及人饮茶后血清中咖啡因浓度的检测方法。考察了洗脱剂种类和用量对咖啡因回收率的影响。当萃取柱依次以2mL水活化,水溶液上样,2mL水淋洗,6mL甲醇-乙酸(9∶1,V/V)洗脱,咖啡因在MIP固相萃取柱上的回收率达到97.5%,而在NIP柱上的回收率仅为54.9%。  相似文献   

8.
A molecularly imprinted polymer (MIP) was synthesized in order to specifically extract vinflunine, an anticancer agent, and its metabolite (4‐O‐deacetylvinflunine) from bovine plasma and artificial urine by solid‐phase extraction (SPE). Vinorelbine, a non‐fluorinated analogue of vinflunine, was selected as a template for MIP synthesis. The selectivity of MIP versus the template (vinorelbine) and other alkaloids (catharanthine, vinblastine, vincristine, vinflunine and 4‐O‐deacetylvinflunine) was shown by a SPE protocol carried out with non‐aqueous samples. A second protocol was developed for aqueous samples with two consecutive washing steps (AcOH–NH2OH buffer (pH 7, I=10 mM)–MeOH mixture 95:5 v/v and ACN–AcOH mixture 99:1 v/v) and an elution step (MeOH–AcOH mixture 90:10 v/v). Thus, MIP‐SPE of bovine plasma brought high recoveries, 81 and 89% for vinflunine and its metabolite, respectively. This protocol was slightly modified for artificial urine samples in order to obtain a good MIP/NIP selectivity; furthermore, elution recoveries were 73 and 81% for vinflunine and its metabolite, respectively. Repeatability was assessed in both biological matrices and RSD (%) were inferior to 4%. The MIP also showed a suitable linearity (r2 superior to 0.99), between 0.25 and 10 μg/mL for plasma, and between 1 and 5 μg/mL for artificial urine.  相似文献   

9.
The aim of this work was to develop a method for the clean-up of a mycotoxin, i.e. Ochratoxin A (OTA), from cereal extracts employing a new molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE) and to compare with an immunoaffinity column. A first series of experiments was carried out in pure solvents to estimate the potential of the imprinted sorbent in terms of selectivity studying the retention of OTA on the MIP and on a non-imprinted polymer using conventional crushed monolith. The selectivity of the MIP was also checked by its application to wheat extracts. Then, after this feasibility study, two different formats of MIP: crushed monolith and micro-beads were evaluated and compared. Therefore an optimization procedure was applied to the selective extraction from wheat using the MIP beads. The whole procedure was validated by applying it to wheat extract spiked by OTA at different concentration levels and then to a certified contaminated wheat sample. Recoveries close to 100% were obtained. The high selectivity brought by the MIP was compared to the selectivity by an immunoaffinity cartridge for the clean-up of the same wheat sample. The study of capacity of both showed a significant higher capacity of the MIP.  相似文献   

10.
In this paper we describe the synthesis, characterisation and use of two distinct molecularly imprinted polymers (MIPs) prepared using esters of p-hydroxybenzoic acid (parabens) as templates: one MIP was synthesised by precipitation polymerisation using a semi-covalent molecularly imprinting strategy with methyl paraben as the template/target (MIP 1); the second MIP was prepared in monolithic form through a conventional non-covalent molecular imprinting strategy, with butyl paraben as the template (MIP 2). MIP 1 recognized methyl paraben, showed cross-selectivity for other parabens analytes used in the study and higher affinity towards these compounds than did a non-imprinted control polymer. Similarly, MIP 2 demonstrated higher affinity towards paraben analytes than a non-imprinted control polymer.For the analysis of environmental water samples, a solid-phase extraction (SPE) protocol was developed using MIP 2 as sorbent, and results were compared to a SPE using a commercial sorbent (Oasis HLB). With MIP 2 as sorbent and butyl paraben as target, when percolating 500 mL of river water spiked at 1 μg L−1 through the SPE cartridge, and using 1 mL of isopropanol as cleaning solvent, a higher recovery of butyl 4-hydroxybenzoate (butyl paraben) and a cleaner chromatogram where achievable when using the MIP compared to the commercial sorbent.  相似文献   

11.
The molecularly imprinted polymers (MIPs) were synthesised and the influence of the type of porogen, the nature of sample solvent, and the binding capacity of material were tested by high-performance liquid chromatography (HPLC). Umbelliferone was used as the template for imprint formation. Methacrylic acid was used as the monomer and acetonitrile, ethanol, and chloroform as porogen. Non-imprinted polymers (NIPs) were prepared by the same procedure. The highest value of the specific binding capacity (269 μg of umbelliferone per 100 mg of polymer) was obtained for polymers prepared in chloroform as porogen and methanol/water (φ r = 1: 1) as the sample solvent. The group-selective MIP was used as sorbent for the SPE pre-treatment of umbelliferone from plant extracts prior to HPLC analysis. Analysis of the spiked samples showed good recoveries (> 77 %). The limit of detection, limit of determination, and repeatability of the method were also calculated.  相似文献   

12.
Molecularly imprinted polymers (MIPs) are synthetic polymers designed to selectively extract target analytes from complex matrices (including biological matrices). The literature shows that MIPs have a degree of cross-selectivity from analytes within the same class of compounds. A commercially available MIP for tobacco-specific nitrosamines (TSNAs) is designed to be class selective for four TSNA compounds. This study sought to characterize the extent of cross-selectivity of the TSNA MIPs with other tobacco alkaloids. Cross-selectivity and recovery of the SupelMIP™ TSNA SPE cartridges was assessed with N-nitrosonornicotine (NNN), nicotine, cotinine and morphine. Their recoveries were compared with the recoveries of a nonimprinted polymer SPE cartridge, and two traditional SPE cartridges: a Waters mixed-mode cation exchange cartridge and a Waters hydrophilic–lipophilic balance cartridge. NNN and cotinine had the highest recoveries with the MIP cartridge, over 80%, and cotinine samples in urine had >80% recoveries. Nicotine had highly variable recoveries, possibly owing to differing chemical properties from the TSNAs. All three analytes had significantly different recoveries with the MIP cartridges compared with the traditional SPE cartridges. Morphine displayed nonspecific interactions with the MIP cartridges. Utilization of the TSNAs’ cross-selectivity allows for simultaneous extraction and identification of multiple tobacco biomarkers using one extraction technique.  相似文献   

13.
A molecularly imprinted polymer (MIP) has been prepared for the first time with ciprofloxacin (CIPRO) as the template molecule, via a noncovalent synthetic procedure. Prior to its use as a sorbent in SPE, the MIP was evaluated chromatographically to confirm that it was indeed molecularly imprinted. The MIP was then used to extract CIPRO selectively from urine samples by means of a two-step SPE procedure in which a commercial Oasis cartridge and a molecularly imprinted SPE cartridge were combined in series. This approach allowed the matrix compounds present in the samples to be removed effectively. The urine extracts obtained after this two-step SPE procedure was applied were relatively clean compared to the original samples, and this made it possible to inject directly the extracts into a mass spectrometer and thus quantify CIPRO in urine samples at low levels and reduce the time of analysis.  相似文献   

14.
In this paper we describe the synthesis of a molecularly imprinted polymer (MIP) by precipitation polymerisation, with barbital as the template molecule, and the application of the barbital MIP as a molecularly selective sorbent in the solid-phase extraction (SPE) of barbiturates from human urine samples. The MIP was synthesised by precipitation polymerisation using 2,6-bis-acrylamidopyridine as the functional monomer and DVB-80 as the cross-linking agent. The spherical MIP particles produced were 4.2 ± 0.4 μm in diameter; a non-imprinted control polymer (NIP) in bead form was 4.8 ± 0.4 μm (mean±standard deviation) in diameter. The particles were packed into a solid-phase extraction cartridge and employed as a novel sorbent in a molecularly imprinted solid-phase extraction (MISPE) protocol. The MIP showed high selectivity for the template molecule, barbital, a feature which can be ascribed to the high-fidelity binding sites present in the MIP which arose from the use of 2,6-bis-acrylamidopyridine as the functional monomer. However, the MIP also displayed useful cross-selectivity for other barbiturates besides barbital. For real samples, the MIP was applied for the extraction of four barbiturates from human urine. However, due to the high urea concentration in this sample which interfere the proper interaction of barbiturates onto the MIP, a tandem system using a commercially available sorbent was developed.  相似文献   

15.
The combination of molecularly imprinted polymers (MIPs) and solid phase extraction (SPE) is reviewed. MIPs, which have high selectivity and affinity for a predetermined molecule (template), have been used as sorbents for SPE to selectively isolate analytes from biological, pharmaceutical, and environmental samples. Solid phase extraction with molecularly imprinted polymers (MIP–SPE) is a promising technique which allows specific analytes to be selectively extracted from complex matrices. This survey summarizes the characteristics, development and application of MIP–SPE in recent years. Existed problems and the future direction of MIP–SPE are also discussed.  相似文献   

16.
韦寿莲  郭小君  严子军  刘永  汪洪武 《色谱》2014,32(5):458-463
以邻苯二甲酸二辛酯(DOP)为虚拟模板分子,α-甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,采用沉淀聚合法制备了对邻苯二甲酸二(2-丙基庚)酯(DPHP)具有高选择性的分子印迹聚合物(MIP)。用紫外分光光度法探索了不同功能单体与模板分子的结合能力,与功能单体丙烯酸(AA)相比,MAA与DOP的结合能力更强,其最佳结合的物质的量比为6:1。考察MIP对DOP、DPHP、邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二丁酯(DBP)的选择吸附性能,发现该聚合物对DPHP具有更高的选择吸附性。以制备的聚合物为固相萃取填料,结合HPLC分析,考察了淋洗剂与洗脱剂的种类和用量对DPHP回收率的影响。将DPHP甲醇溶液加载至萃取柱后用1 mL甲醇-水(1:9,v/v)淋洗,5 mL甲醇-乙酸(9:1,v/v)洗脱,DPHP在分子印迹固相萃取(MISPE)柱上的回收率达到96.8%,而在非印迹固相萃取(NISPE)柱上的回收率仅为52.9%。将建立的MISPE-HPLC方法应用于测定兔口服DPHP后不同时间点兔血清中DPHP的浓度,发现其血药浓度的最大值为5.88 μg/mL,达峰值时间为4 h,DPHP加标回收率为90.0%~92.0%,相对标准偏差小于5%。  相似文献   

17.
A molecularly imprinted polymer (MIP) was prepared using (?)‐norephedrine as the template, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross‐linker and chloroform as the porogen. The MIP was used as a selective sorbent in the molecularly imprinted solid‐phase extraction (MIP‐SPE) of the psychoactive phenylpropylamino alkaloids, norephedrine and its analogs, cathinone and cathine, from Khat (Catha edulis Vahl. Endl.) leaf extracts prior to HPLC‐DAD analysis. The MIP was able to selectively extract the alkaloids from the aqueous extracts of Khat. Loading, washing and elution of the alkaloids bound to the MIP were evaluated under different conditions. The clean baseline of the Khat extract obtained after MIP‐SPE confirmed that a selective and efficient sample clean‐up was achieved. Good recoveries (90.0–107%) and precision (RSDs 2.3–3.2%) were obtained in the validation of the MIP‐SPE‐HPLC procedure. The content of the three alkaloids in Khat samples determined after treatment with MIP‐SPE and a commercial Isolute C18 (EC) SPE cartridge were in good agreement. These findings indicate that MIP‐SPE is a reliable method that can be used for sample pre‐treatment for the determination of Khat alkaloids in plant extracts or similar matrices and could be applicable in pharmaceutical, forensic and biomedical laboratories. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Three polymers have been synthesised using 4-chlorophenol (4-CP) as the template, following different protocols (non-covalent and semi-covalent) and using different functional co-monomers, 4-vinylpyridine (4-VP) and methacrylic acid (MAA). The polymers were evaluated to check their selectivity as molecularly imprinted polymers (MIPs) in solid-phase extraction (SPE) coupled on-line to liquid chromatography. The solid-phase extraction procedure using MIPs (MISPE), including the clean-up step to remove any interferences, was optimised. The 4-VP non-covalent polymer was the only one which showed a clear imprint effect. This MIP also showed cross-reactivity for the 4-chloro-substituted phenols and for 4-nitrophenol (4-NP) from a mixture containing the 11 priority EPA (Environmental Protection Agency) phenolic compounds and 4-chlorophenol. The MIP was applied to selectively extract the 4-chloro-substituted compounds and 4-NP from river water samples.  相似文献   

19.
In this article, for the first time, a molecularly imprinted polymer (MIP) for the metolcarb was prepared by bulk polymerization using metolcarb as the template, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross‐linker. The prepared polymer was characterized by FT‐IR, static and kinetic adsorption experiments, and the results showed that it has been successfully synthesized and had good selective ability for metolcarb. The MIP was applied as a sorbent in molecularly imprinted SPE coupled with HPLC‐UV for separation and determination of trace metolcarb in three kinds of food matrices at three concentration levels. Under the optimal conditions, the LODs (S/N=3) of cabbage, cucumber and pear were 7.622, 6.455 and 13.52 μg/kg, respectively, and recoveries were in the range of 68.80–101.31% with RSD (n=3) below 3.78% in all cases. To demonstrate further the selectivity of the MIP obtained, a comparison with commercially available C18 SPE was performed. The results indicated that molecularly imprinted SPE showed better chromatography, better selectivity and higher recoveries for metolcarb than commercially available C18 SPE.  相似文献   

20.
A new molecularly imprinted polymer for extraction of crocin from saffron stigmas was prepared using gentiobiose (a glycoside moiety in crocin structure) as a template. Crocin binding to gentiobiose imprinted polymer (Gent‐MIP) was studied in comparison with a blank nonimprinted polymer in aqueous media. Affinity of the Gent‐MIP for the crocin was more than the nonimprinted polymer at all concentrations. In Scatchard analysis, the number of binding sites in each gram of polymer (maximum binding sites) and dissociation constant of crocin to binding sites were 18.4 μmol/g polymer and 11.2 μM, respectively. The Gent‐MIP was then used as the sorbent in an SPE method for isolation and purification of crocin from methanolic extract of saffron stigmas. The recovery of crocin, safranal and picrocrocin was determined in washing and elution steps. The Gent‐MIP had significantly higher affinity for crocin than other compounds and enabled selective extraction of crocin with a high recovery (84%) from a complex mixture. The results demonstrated the possibility of using a part of a big molecule in preparing a molecularly imprinted polymer with a good selectivity for the main structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号