首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider massive charged Dirac fields on the Reissner-Nordstrøm metric. We prove the existence and asymptotic completeness of wave operators, classical at horizon and modified at infinity. Communicated by Piotr Chrusciel submitted 24/05/02, accepted: 14/02/03  相似文献   

2.
We consider a relativistic ansatz for the vacuum expectation values (VEVs) of a quantum field on a globally hyperbolic space-time which is motivated by certain Euclidean field theories. The Yang-Feldman asymptotic condition w.r.t. an in-field in a quasi-free representation of the canonic commutation relations (CCR) leads to a solution of this ansatz for the VEVs. A GNS-like construction on a non-degenerate inner product space then gives local, covariant quantum fields with indefinite metric on a globally hyperbolic space-time. The non-trivial scattering behavior of quantum fields is analyzed by construction of the out-fields and calculation of the scattering matrix. A new combined effect of non-trivial quantum scattering and non-stationary gravitational forces is described for this model, as quasi-free in- fields are scattered to out-fields which form a non-quasi-free representations of the CCR. The asymptotic condition, on which the construction is based, is verified for the concrete example of de Sitter space-time. Communicated by Klaus Fredenhagen submitted 03/05/02, accepted: 18/07/03  相似文献   

3.
4.
The fact that vector potentials have a direct significance to quantum particles moving in magnetic fields is known as the Aharonov–Bohm effect (A–B effect). We study this quantum effect through the semiclassical analysis on total cross sections in the magnetic scattering by two solenoidal (point-like) fields with total flux vanishing in two dimensions. We derive the asymptotic formula with first three terms. The system with two parallel fields seems to be important in practical aspects as well as in theoretical aspects, because it may be thought of a toroidal solenoid with zero cross section in three dimensions under the idealization that the two fields connect at infinity in their direction. The corresponding classical mechanical system has the trajectory oscillating between two centers of fields. The special emphasis is placed on analyzing how the trapping effect from classical mechanics is related to the A–B quantum effect in the semiclassical asymptotic formula. Submitted: September 3, 2006. Accepted: January 10, 2007.  相似文献   

5.
We consider a charged particle following the boundary of a two dimensional domain because a homogeneous magnetic field is applied. We develop the basic scattering theory for the corresponding quantum mechanical edge states. The scattering operator attains a limit for large magnetic fields which preserves Landau bands. We interpret the corresponding scattering phases in terms of classical trajectories. Communicated by Yosi Avron submitted 23/02/05, accepted 3/05/05  相似文献   

6.
We continue the study of scattering theory for the system consisting of a Schrödinger equation and a wave equation with a Yukawa type coupling in space dimension 3. In a previous paper, we proved the existence of modified wave operators for that system with no size restriction on the data and we determined the asymptotic behaviour in time of solutions in the range of the wave operators, under a support condition on the asymptotic state required by the different propagation properties of the wave and Schrödinger equations. Here we eliminate that condition by using an improved asymptotic form for the solutions. Communicated by Bernard Helffer submitted 20/02/03, accepted: 24/06/03  相似文献   

7.
The asymptotic properties at future null infinity of the solutions of the relativistic Vlasov-Maxwell system whose global existence for small data has been established by the author in a previous work are investigated. These solutions describe a collisionless plasma isolated from incoming radiation. It is shown that a non-negative quantity associated to the plasma decreases as a consequence of the dissipation of energy in form of outgoing radiation. This quantity represents the analogue of the Bondi mass in general relativity. Communicated by Vincent Rivasseausubmitted 13/07/03, accepted 11/09/03  相似文献   

8.
We consider an infinite two‐dimensional waveguide that, far from the coordinate origin, coincides with a strip. The waveguide has two narrows of diameter ?. The narrows play the role of effective potential barriers for the longitudinal electron motion. The part of the waveguide between the narrows becomes a ‘resonator’, and there can arise conditions for electron resonant tunneling. A magnetic field in the resonator can change the basic characteristics of this phenomenon. In the presence of a magnetic field, the tunneling phenomenon is feasible for producing spin‐polarized electron flows consisting of electrons with spins of the same direction. We assume that the whole domain occupied by a magnetic field is in the resonator. An electron wave function satisfies the Pauli equation in the waveguide and vanishes at its boundary. Taking ? as a small parameter, we derive asymptotics for the probability T(E) of an electron with energy E to pass through the resonator, for the ‘resonant energy’ Eres, where T(E) takes its maximal value and for some other resonant tunneling characteristics. The asymptotic formulas contain some unknown constants. We find them by solving several auxiliary boundary value problems (independent of ?) in unbounded domains. Having the asymptotics with calculated constants, we can take it as numerical approximation to the resonant tunneling characteristics. Independently, we compute numerically the scattering matrix and compare the asymptotic and numerical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
黄春妍  刘祖汉 《数学学报》2006,49(4):763-774
本文研究当κ很大时置于非均匀外加磁场中超导体的能量,其中外加磁场远离第一与第二临界磁场.我们得到了任意外加磁场中极小能量的渐进性态,从而解决了Sandier和Serfatv提出的猜想:极小能量与变磁场的权的形式成比例.  相似文献   

10.
We study the effects of electromagnetic fields on nonrelativistic charged spinning particles bound by a short-range potential. We analyze the exact solution of the Pauli equation for an electron moving in the potential field determined by the three-dimensional δ-well in the presence of a strong magnetic field. We obtain asymptotic expressions for this solution for different values of the problem parameters. In addition, we consider electron probability currents and their dependence on the magnetic field. We show that including the spin in the framework of the nonrelativistic approach allows correctly taking the effect of the magnetic field on the electric current into account. The obtained dependences of the current distribution, which is an experimentally observable quantity, can be manifested directly in scattering processes, for example.  相似文献   

11.
We study the asymptotic behavior of the time delay (defined as the trace of the Eisenbud-Wigner time delay operator) for scattering by potential and by magnetic field with two compact supports as the separation of supports goes to infinity. The emphasis is placed on analyzing how different the asymptotic formulae are in potential and magnetic scattering. The difference is proper to scattering in two dimensions.  相似文献   

12.
We prove that the averaged scattering solutions to the Schrödinger equation with short-range electromagnetic potentials (V, A) where V(x) = O(|x|), A(x) = O(|x|), |x| → ∞, ρ > 1, are dense in the set of all solutions to the Schrödinger equation that are in L 2(K) where K is any connected bounded open set in ? n ,n ≥ 2, with smooth boundary. We use this result to prove that if two short-range electromagnetic potentials (V 1, A 1) and (V 2, A 2) in ? n , n ≥ 3, have the same scattering matrix at a fixed positive energy and if the electric potentials V j and the magnetic fields F j : = curl A j , j = 1, 2, coincide outside of some ball they necessarily coincide everywhere. In a previous paper of Weder and Yafaev the case of electric potentials and magnetic fields that are asymptotic sums of homogeneous terms at infinity was studied. It was proven that all these terms can be uniquely reconstructed from the singularities in the forward direction of the scattering amplitude at a fixed positive energy. The combination of the new uniqueness result of this paper and the result of Weder and Yafaev implies that the scattering matrix at a fixed positive energy uniquely determines electric potentials and magnetic fields that are a finite sum of homogeneous terms at infinity, or more generally, that are asymptotic sums of homogeneous terms that actually converge, respectively, to the electric potential and to the magnetic field.  相似文献   

13.
In this paper we prove several results for the scattering phase (spectral shift function) related with perturbations of the electromagnetic field for the Dirac operator in the Euclidean space. Many accurate results are now available for perturbations of the Schrödinger operator, in the high energy regime or in the semi-classical regime. Here we extend these results to the Dirac operator. There are several technical problems to overcome because the Dirac operator is a system, its symbol is a 4×4 matrix, and its continuous spectrum has positive and negative values. We show that we can separate positive and negative energies to prove high energy asymptotic expansion and we construct a semi-classical Foldy-Wouthuysen transformation in the semi-classical case. We also prove an asymptotic expansion for the scattering phase when the speed of light tends to infinity (non-relativistic limit).  相似文献   

14.
We obtain an explicit formula for the diagonal singularities of the scattering amplitude for the Dirac equation with short‐range electromagnetic potentials. Using this expansion we uniquely reconstruct an electric potential and magnetic field from the high‐energy limit of the scattering amplitude. Moreover, supposing that the electric potential and magnetic field are asymptotic sums of homogeneous terms we give the unique reconstruction procedure for these asymptotics from the scattering amplitude, known for some energy E. Furthermore, we prove that the set of the averaged scattering solutions to the Dirac equation is dense in the set of all solutions to the Dirac equation that are in L2(Ω), where Ω is any connected bounded open set in with smooth boundary, and we show that if we know an electric potential and a magnetic field for , then the scattering amplitude, given for some energy E, uniquely determines these electric potential and magnetic field everywhere in . Combining this uniqueness result with the reconstruction procedure for the asymptotics of the electric potential and the magnetic field we show that the scattering amplitude, known for some E, uniquely determines a electric potential and a magnetic field, that are asymptotic sums of homogeneous terms, which converges to the electric potential and the magnetic field respectively. Moreover, we discuss the symmetries of the kernel of the scattering matrix, which follow from the parity, charge‐conjugation and time‐reversal transformations for the Dirac operator. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
We investigate the ground state of a uniaxial ferromagnetic plate with perpendicular easy axis and subject to an applied magnetic field normal to the plate. Our interest is in the asymptotic behavior of the energy in macroscopically large samples near the saturation field. We establish the scaling of the critical value of the applied field strength below saturation at which the ground state changes from the uniform to a multidomain magnetization pattern and the leading order scaling behavior of the minimal energy. Furthermore, we derive a reduced sharp interface energy, giving the precise asymptotic behavior of the minimal energy in macroscopically large plates under a physically reasonable assumption of small deviations of the magnetization from the easy axis away from domain walls. On the basis of the reduced energy and by a formal asymptotic analysis near the transition, we derive the precise asymptotic values of the critical field strength at which non-trivial minimizers (either local or global) emerge. The non-trivial minimal energy scaling is achieved by magnetization patterns consisting of long slender needle-like domains of magnetization opposing the applied field.  相似文献   

16.
The induction equation of relativistic magnetohydrodynamics is considered as a singular perturbation problem for small magnetic diffusivity. When the quantities depend on a single space variable, the resulting hyperbolic equation may be studied with techniques of asymptotic analysis. Different approximations are found for initial, intermediate, and large times. The last case is the most difficult; the approximate magnetic flux function satisfies a certain parabolic equation. This equation is studied from the viewpoint of energy dissipation, providing clues on the behavior of the electric and magnetic fields. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
This paper is devoted to the scattering of photons by charged particles in models of non-relativistic quantum mechanical matter coupled minimally to the soft modes of the quantized electromagnetic field. We prove existence of scattering states involving an arbitrary number of asymptotic photons of arbitrarily high energy. Previously, upper bounds on the photon energies seemed necessary in the case of n>1 asymptotic photons and non-confined, non-relativistic charged particles.  相似文献   

18.
We deal with singular perturbations of nonlinear problems depending on a small parameter ε > 0. First we consider the abstract theory of singular perturbations of variational inequalities involving some nonlinear operators, defined in Banach spaces, and describe the asymptotic behavior of these solutions as ε → 0. Then these abstract results are applied to some boundary value problems. Bibliography: 15 titles.  相似文献   

19.
We consider a class of nonlinear Klein-Gordon equations which are Hamiltonian and are perturbations of linear dispersive equations. The unperturbed dynamical system has a bound state, a spatially localized and time periodic solution. We show that, for generic nonlinear Hamiltonian perturbations, all small amplitude solutions decay to zero as time tends to infinity at an anomalously slow rate. In particular, spatially localized and time-periodic solutions of the linear problem are destroyed by generic nonlinear Hamiltonian perturbations via slow radiation of energy to infinity. These solutions can therefore be thought of as metastable states. The main mechanism is a nonlinear resonant interaction of bound states (eigenfunctions) and radiation (continuous spectral modes), leading to energy transfer from the discrete to continuum modes. This is in contrast to the KAM theory in which appropriate nonresonance conditions imply the persistence of invariant tori. A hypothesis ensuring that such a resonance takes place is a nonlinear analogue of the Fermi golden rule, arising in the theory of resonances in quantum mechanics. The techniques used involve: (i) a time-dependent method developed by the authors for the treatment of the quantum resonance problem and perturbations of embedded eigenvalues, (ii) a generalization of the Hamiltonian normal form appropriate for infinite dimensional dispersive systems and (iii) ideas from scattering theory. The arguments are quite general and we expect them to apply to a large class of systems which can be viewed as the interaction of finite dimensional and infinite dimensional dispersive dynamical systems, or as a system of particles coupled to a field. Oblatum: 6-XI-1998 & 12-VI-1998 / Published online: 14 January 1999  相似文献   

20.
We prove Anderson localization near the bottom of the spectrum for two-dimensional discrete Schrödinger operators with random magnetic fields and no scalar potentials. We suppose the magnetic fluxes vanish in pairs, and the magnetic field strength is bounded from below by a positive constant. Main lemmas are the Lifshitz tail and the Wegner estimate on the integrated density of states. Then, Anderson localization, i.e., pure point spectrum with exponentially decreasing eigenfunctions, is proved by the standard multiscale argument. Communicated by Gian Michele Graf submitted 01/10/02, accepted: 16/04/03  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号