首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel triblock copolymers with PEG middle blocks of 1–10 kDa and poly(N-isopropylacrylamide-co-t-butylacrylamide) statistical copolymer side arms with DPn?≈?88 and different compositions, were synthesized by SET-LRP. The thermogelation properties of their aqueous solutions depended on both hydrophobic monomer content of the side blocks and molecular weight (MW) of the poly(ethylene glycol) (PEG) middle block, as proven by dynamic rheometry, DSC, and tube inversion method measurements. At constant PEG chain length, increasing TBAM proportions led to a gelation process occurring at progressively lower temperatures, as well as to a lower stability of the forming hydrogels in the case of shorter-PEG-chain block copolymers. By employing longer PEG blocks (MPEG ≥6,000 Da), stable hydrogels with the gelation temperature below 37 °C could be obtained. For a constant composition of the copolyacrylamide blocks, the dependence of the phase transition temperature (Tph) on MPEG displayed a different shape at different polymer solution concentrations, because of the stronger variation of Tph with polymer concentration as MPEG increased. Also, the viscoelastic properties of the hydrogels resulting from 20 wt.% polymer aqueous solutions at 37 °C were stronger affected by the MW of the PEG middle block than by the hydrophobic character of the thermosensitive side blocks.  相似文献   

2.
Hydrogel formation triggered by a change in temperature is an attractive mechanism for in situ gelling biomaterials for pharmaceutical applications such as the delivery of therapeutic proteins. In this study, hydrogels were prepared from ABA triblock polymers having thermosensitive poly(N-(2-hydroxypropyl) methacrylamide lactate) flanking A-blocks and hydrophilic poly(ethylene glycol) B-blocks. Polymers with fixed length A blocks (~22 kDA) but differing PEG-midblock lengths (2, 4 and 10 kDa) were synthesized and dissolved in water with dilute fluorescein isothiocyanate (FITC)-labeled dextrans (70 and 500 kDA). Hydrogels encapsulating the dextrans were formed by raising the temperature. Fluorescence recovery after photobleaching (FRAP) studies showed that diffusion coefficients and mobile fractions of the dextran dyes decreased upon elevating temperatures above 25 °C. Confocal laser scanning microscopy and cryo-SEM demonstrated that hydrogel structure depended on PEG block length. Phase separation into polymer-rich and water-rich domains occurred to a larger extent for polymers with small PEG blocks compared to polymers with a larger PEG block. By changing the PEG block length and thereby the hydrogel structure, mobility of FITC-dextran could be tailored. At physiological pH the hydrogels degraded over time by ester hydrolysis, resulting in increased mobility of the encapsulated dye. Since diffusion can be controlled according to polymer design and concentration, plus temperature, these biocompatible hydrogels are attractive as potential in situ gelling biodegradable materials for macromolecular drug delivery.  相似文献   

3.
Summary: Branched poly(L -lactide)-poly(ethylene glycol) (PLLA-PEG) block copolymers were synthesized from trifunctional PLLA and amine functionalized methoxy poly(ethylene glycol)s. The copolymers in water formed hydrogels that showed thermo-responsive behavior. The hydrogels underwent a gel to sol transition with increasing temperature as determined with the vial tilting method and oscillatory rheology. For all copolymers, the transition temperature increased with increasing copolymer concentration. The transition temperature of corresponding branched copolymers also increased with increasing PEG molecular weight, and surprisingly decreased with increasing molecular weight of the PLLA branches. In general, the gel-sol transition is explained by disruption of micellar or aggregate interactions because of partial dehydration and shrinkage of the PEG chains. An increase in the molecular weight of the PLLA branches led to the formation of micelles and aggregates as observed with DLS at low concentrations. It is speculated that the non-uniform size distribution and possible crystallization of longer PLLA blocks may have a negative effect on the formation of micellar packing upon gelation, allowing the disruption of micellar or aggregate interactions to occur at lower temperatures. The transition temperature of the gels could be tuned closely to body temperature by varying the concentration of the solution or the molecular weight of the PEG block and the PLLA blocks, which implies that these polymers may be used as injectable systems for in-situ gel formation.  相似文献   

4.
The thermoreversible gelation of Pluronic [poly(ethylene oxide) (PEO)–polypropylene oxide (PPO)–PEO] aqueous solutions originates from micelle formation and micelle volume changes due to PEO–water and PPO–water lower critical solution temperature behavior. The micelle volume fraction is known to dominate the sol–gel transition behavior of Pluronic aqueous solutions. Triblock copolymers of PEO and aliphatic polyesters, instead of PPO, were prepared by hexamethylene diisocyanate coupling and dicyclohexyl carbodiimide coupling. Through changes in the molecular weight and hydrophobicity of the polyester middle block, the hydrophobic–hydrophilic balance of each block was systematically controlled. The following aliphatic polyesters were used: poly(hexamethylene adipate) (PHA), poly(ethylene adipate) (PEA), and poly(ethylene succinate) (PESc). With the hydrophobicity and molecular weight of the middle block increasing, the critical micelle concentration at the same critical micelle temperature decreased, and the absolute value of the micellization free energy increased. The micelle size was rather insensitive to temperature but slightly decreased with increasing temperature. PEO–PHA–PEO and PEO–PEA–PEO triblock copolymers needed high polymer concentrations to form gels. This was ascribed to the tight aggregation of PHA and PEA chains in the micelle core due to strong hydrophobic interactions, which induced the contraction of the micelle core. However, because of the relatively hydrophilic core, a PEO–PESc–PEO aqueous solution showed gelation at a low polymer concentration. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 772–784, 2004  相似文献   

5.
A series of symmetrical, thermo-responsive triblock copolymers was prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization, and studied in aqueous solution with respect to their ability to form hydrogels. Triblock copolymers were composed of two identical, permanently hydrophobic outer blocks, made of low molar mass polystyrene, and of a hydrophilic inner block of variable length, consisting of poly(methoxy diethylene glycol acrylate) PMDEGA. The polymers exhibited a LCST-type phase transition in the range of 20-40 °C, which markedly depended on molar mass and concentration. Accordingly, the triblock copolymers behaved as amphiphiles at low temperatures, but became water-insoluble at high temperatures. The temperature dependent self-assembly of the amphiphilic block copolymers in aqueous solution was studied by turbidimetry and rheology at concentrations up to 30 wt %, to elucidate the impact of the inner thermoresponsive block on the gel properties. Additionally, small-angle X-ray scattering (SAXS) was performed to access the structural changes in the gel with temperature. For all polymers a gel phase was obtained at low temperatures, which underwent a gel-sol transition at intermediate temperatures, well below the cloud point where phase separation occurred. With increasing length of the PMDEGA inner block, the gel-sol transition shifts to markedly lower concentrations, as well as to higher transition temperatures. For the longest PMDEGA block studied (DP(n) about 450), gels had already formed at 3.5 wt % at low temperatures. The gel-sol transition of the hydrogels and the LCST-type phase transition of the hydrophilic inner block were found to be independent of each other.  相似文献   

6.
Block copolymers comprising thermosensitive poly(N-isopropylacrylamide) (PNIPAM) and hydrophobic poly(n-butyl acrylate) (PBA) blocks, were synthesized using the reversible addition-fragmentation chain transfer polymerization (RAFT), their thermosensitive behavior was studied by ultraviolet spectrophotometer (UV) and dynamic light scattering (DLS). The lower critical solution temperature (LCST) was strongly correlated to the hydrophobic/hydrophilic ratio of the copolymers. Their micellization and self-assembly behavior in dilute aqueous solution were studied by surface tension (SFT), DLS and TEM. The resulting block copolymers reversibly formed or deformed micellar assemblies during their LCSTs. The critical micelle concentration (CMC) was controlled by the composition of PBA and PNIPAM, indicating the successful formation of the block copolymers.  相似文献   

7.
Amphiphilic AB block copolymers consisting of thermosensitive poly(N-(2-hydroxypropyl) methacrylamide lactate) and poly(ethylene glycol), pHPMAmDL-b-PEG, were synthesized via a macroinitiator route. Dynamic light scattering measurements showed that these block copolymers form polymeric micelles in water with a size of around 50 nm by heating of an aqueous polymer solution from below to above the critical micelle temperature (cmt). The critical micelle concentration as well as the cmt decreased with increasing pHPMAmDL block lengths, which can be attributed to the greater hydrophobicity of the thermosensitive block with increasing molecular weight. Cryogenic transmission electron microscopy analysis revealed that the micelles have a spherical shape with a narrow size distribution. 1H NMR measurements in D2O showed that the intensity of the peaks of the protons from the pHPMAmDL block significantly decreased above the cmt, indicating that the thermosensitive blocks indeed form the solidlike core of the micelles. Static light scattering measurements demonstrated that pHPMAmDL-b-PEG micelles with relatively large pHPMAmDL blocks possess a highly packed core that is stabilized by a dense layer of swollen PEG chains. FT-IR analysis indicated that dehydration of amide bonds in the pHPMAmDL block occurs when the polymer dissolved in water is heated from below to above its cmt. The micelles were stable when an aqueous solution of micelles was incubated at 37 degrees C and at pH 5.0, where the hydrolysis rate of lactate side groups is minimized. On the other hand, at pH 9.0, where hydrolysis of the lactic acid side groups occurs, the micelles started to swell after 1.5 h of incubation and complete dissolution of micelles was observed after 4 h as a result of hydrophilization of the thermosensitive block. Fluorescence spectroscopy measurements with pyrene loaded in the hydrophobic core of the micelles showed that when these micelles were incubated at pH 8.6 and at 37 degrees C the microenvironment of pyrene became increasingly hydrated in time during this swelling phase. The results demonstrate the potential applicability of pHPMAmDL-b-PEG block copolymer micelles for the controlled delivery of hydrophobic drugs.  相似文献   

8.
Thermosensitive homopolymers and copolymers with hydroxy groups were synthesized via the living cationic polymerization of Si‐containing vinyl ethers. The cationic homopolymerization and copolymerization of five vinyl ethers with silyloxy groups, each with a different spacer length, were examined with a cationogen/Et1.5AlCl1.5 initiating system in the presence of an added base. When an appropriate base was added, the living cationic polymerization of Si‐containing monomers became feasible, giving polymers with narrow molecular weight distributions and various block copolymers. Subsequent desilylation gave well‐defined polyalcohols, in both water‐soluble and water‐insoluble forms. One of these polyalcohols, poly(4‐hydroxybutyl vinyl ether), underwent lower‐critical‐solution‐temperature‐type thermally induced phase separation in water at a critical temperature (TPS) of 42 °C. This phase separation was quite sensitive and reversible on heating and cooling. The phase separation also occurred sensitively with random copolymers of thermosensitive and hydrophilic or hydrophobic units, the TPS values of which in water could be controlled by the monomer feed ratio. The thermal responsiveness of this polyalcohol unit made it possible to prepare novel thermosensitive block and random copolymers consisting solely of alcohol units. One example prepared in this study was a 20 wt % aqueous solution of a diblock copolymer consisting of thermosensitive poly(4‐hydroxybutyl vinyl ether) and water‐soluble poly(2‐hydroxyethyl vinyl ether) segments, which transformed into a physical gel above 42 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3300–3312, 2003  相似文献   

9.
Several series of symmetrical triblock copolymers were synthesized by the reversible addition fragmentation chain transfer method. They consist of a long block of poly(N-isopropylacrylamide) as hydrophilic, thermoresponsive middle block, which is end-capped by two small strongly hydrophobic blocks made from five different vinyl polymers. The association of the amphiphilic polymers was studied in dilute and concentrated aqueous solution. The polymer micelles found at low concentrations form hydrogels at high concentrations, typically above 30–35 wt.%. Hydrogel formation and the thermosensitive rheological behavior were studied exemplarily for copolymers with hydrophobic blocks of polystyrene, poly(2-ethylhexyl acrylate), and poly(n-octadecyl acrylate). All systems exhibited a cloud point around 30 °C. Heating beyond the cloud point initially favors hydrogel formation but continued heating results in macroscopic phase separation. The rheological behavior suggests that the copolymers associate into flower-like micelles, with only a small share of polymers that bridge the micelles and act as physical cross-linkers, even at high concentrations.  相似文献   

10.
Thermosensitive polymer micelles are generally obtained with block copolymers in which one block exhibits a lower critical solution temperature in aqueous solution. We investigate a different design that is based on the use of one block bearing a thermally labile side group, whose hydrolysis upon heating shifts the hydrophilic-hydrophobic balance toward the destabilization of block copolymer micelles. Atom transfer radical polymerization was utilized to synthesize a series of diblock copolymers composed of hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(2-tetrahydropyranyl methacrylate) (PTHPMA). We show that micelles of PEO-b-PTHPMA in aqueous solution can be destabilized as a result of the thermosensitive hydrolytic cleavage of tetrahydropyranyl (THP) groups that transforms PTHPMA into hydrophilic poly(methacrylic acid). The three related processes occurring in aqueous solution, namely, hydrolytic cleavage of THP, destabilization of micelles, and release of loaded Nile Red (NR), were investigated simultaneously using 1H NMR, dynamic light scattering, and fluorescence spectroscopy, respectively. At 80 degrees C, the results suggest that the three events proceed with a similar kinetics. Although slower than at elevated temperatures, the disruption of PEO-b-PTHPMA micelles can take place at the body temperature (approximately 37 degrees C), and the release kinetics of NR can be adjusted by changing the relative lengths of the two blocks or the pH of the solution.  相似文献   

11.
The structure of assemblies of block copolymers composed of thermosensitive, biodegradable poly(N-(2-hydroxypropyl) methacrylamide-dilactate) and poly(ethylene glycol) (pHPMAmDL-b-PEG) has been studied by small-angle neutron scattering (SANS). Three amphiphilic copolymers with a fixed PEG of 5 kDa and a partially deuterated pHPMAmDL(d) block of 6700, 10400, or 21200 Da were used to form micelles in aqueous media by heating the polymeric solution from below to above the cloud point temperature (around 10 degrees C) of the thermosensitive block. Simultaneous and quantitative analysis of the scattering cross sections obtained at three different solvent contrasts is expedited using core-shell model, which assumed a homogeneous core of uniform scattering length density. The mean core radius increased from 13 to 18.5 nm with the molecular weight of the pHPMAmDL(d) block, while the thickness of the stabilizing PEG layer was around 8 nm for the three investigated assemblies. In addition, the volume fraction values of the stabilizing PEG chains in the shell are low and decreased from 31% to 14% with increasing the size of pHPMAmDL(d) block which shows that the shell layer of the assemblies is highly hydrated. The corresponding PEG chain grafting densities decreased from 0.22 to 0.11 nm-2 and the distance between PEG chains on the nanoparticles surface increased from 2.4 to 3.4 nm. The pHPMAmDL-b-PEG micelles showed a controlled instability due to hydrolysis of the lactic acid side groups in the thermosensitive block; that is, an increase of the degradation time leads to an increase of the size of the core which becomes less hydrophobic and consequently more hydrated. Neutron experiments supplied accurate information on how the size of the core and the micelle's aggregation number changed with the incubation time. This feature and the initially small size and dense structure in aqueous solution make the polymeric micelles suitable as carriers for hydrophobic drugs.  相似文献   

12.
The micellization of PEO-PPO-PEO block copolymers in p-xylene has been studied in the presence of CO2. With the application of CO2, some copolymers with suitable molecular weights and EO ratios can form reverse micelles with critical micellization pressure up to 5.8 MPa. For the copolymers with the same length of PO block, higher EO ratios facilitate reverse micelle formation. For the copolymers with the same composition, higher molecular weight is favorable to form reverse micelles. With the suitable composition and molecular weight, the critical micelle pressure (CMP) of copolymers decreases with the increase in the lengths of PEO and PPO blocks due to the hydrophilic and folding effects, respectively. Both the EO ratios and the molecular weights are important for the formation of reverse micelle. The reverse micelle solution can solubilize water with W0 (molar ratio of water to EO segment) up to 3.3.  相似文献   

13.
Ring-opening polymerization of D,L-lactide was carried out in the presence of monohydroxylated poly(ethylene glycol) (PEG) with Mn of 2000 and 5000, using zinc powder as catalyst. The resulting PEG-b-polylactide (PEG-PLA) diblocks with various ethylene oxide/lactyl (EO/LA) ratios were coupled with adipoyl chloride to yield PEG-PLA-PEG triblock copolymers. N-Dimethylaminopyridine (DMAP) was used as catalyst. The obtained PEG-PLA-PEG triblock copolymers were characterized by various analytical techniques such as IR, 1H NMR, size exclusion chromatography, X-ray diffraction, and differential scanning calorimetry. Data showed that all the copolymers were semicrystalline with the PEG-type crystalline structure, the crystallinity decreasing with increasing PLA block length. Bioresorbable hydrogels were prepared from the water-soluble triblock copolymers. Rheological measurements showed a gel-sol transition with increasing temperature and gelation was found to be thermoreversible. The copolymer solution behaves like a viscoelastic liquid above the gel point and like a viscoelastic solid below the gel point. The critical gelation concentration, the gel-sol transition temperature at a given concentration, and corresponding moduli depend on both the EO/LA ratio and the molecular weight of the copolymers. It is assumed that gelation results from interactions between PEG blocks at low temperatures and that these interactions are disrupted as the temperature is elevated. The shrinking of PEG blocks with increasing temperature seems to be in agreement with the variation of the gel-sol transition temperatures.  相似文献   

14.
On the basis of the synthesis of water-soluble poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCL-PEG-PCL) block copolymers, the supramolecular hydrogels were fabricated rapidly in aqueous solutions by their inclusion complexation with alpha-cyclodextrin. X-ray diffraction (XRD) analyses confirmed the supramolecular self-assemblies of alpha-cyclodextrin threaded onto amphiphilic PCL-PEG-PCL block copolymers. The resulting hydrogels display a high degree of elasticity, with the storage modulus (G') greater than the loss modulus (G') over the entire range of frequency. Moreover, their viscosity greatly diminished as they were sheared. By controlling the molecular weight of the PEG component in the block copolymers and the content of the block copolymer, their rheological properties could be modulated. Such hydrogel materials have the potential to be used as tissue engineered scaffolds, biosensors in the human body, and carriers for controlled drug delivery.  相似文献   

15.
Double hydrophilic block copolymers (DHBC) consisting of a Jeffamine block, a statistical copolymer based on ethylene oxide and propylene oxide units possessing a lower critical solution temperature (LCST) of 30 degrees C in water, and poly(L-glutamic acid) as a pH-responsive block were synthesized by ring-opening polymerization of gamma-benzyl-L-glutamate N-carboxyanhydride using an amino-terminated Jeffamine macroinitiator, followed by hydrolysis. This DHBC proved thermoresponsive as evidenced by dynamic light scattering and small-angle neutron scattering experiments. Spherical micelles with a Jeffamine core and a poly(L-glutamic acid) corona were formed above the LCST of Jeffamine. The size of the core of such micelles decreased with increasing temperature, with complete core dehydration being achieved at 66 degrees C. Such behavior, commonly observed for thermosensitive homopolymers forming mesoglobules, is thus demonstrated here for a DHBC that self-assembles to generate thermoresponsive micelles of high colloidal stability.  相似文献   

16.
温敏性PCL-PEG-PCL水凝胶的合成、表征及蛋白药物释放   总被引:2,自引:0,他引:2  
考察了温敏性PCL-PEG-PCL水凝胶中聚乙二醇(PEG)及聚己内酯(PCL)不同嵌段组成对其溶胶-凝胶相转变温度以及亲水性药物(牛血清白蛋白, BSA)释放速率的影响. 采用开环聚合法, 以辛酸亚锡为催化剂、PEG1500/PEG1000为引发剂, 与己内酯单体发生开环共聚, 合成了一系列具有不同PEG和PCL嵌段长度的PCL-PEG-PCL型三嵌段共聚物. 通过核磁共振氢谱及凝胶渗透色谱对其组成、结构及分子量进行了表征. 共聚物的溶胶-凝胶相变温度由翻转试管法测定. 利用透射电镜、核磁共振氢谱及荧光探针技术证实了该材料在水溶液中胶束的形成. 以BSA为模型蛋白药物, 制备载药水凝胶, 利用microBCA法测定药物在释放介质中的浓度, 研究其体外释放行为. 实验结果表明, 共聚物的溶胶-凝胶相变温度与PCL及PEG嵌段长度紧密相关, 即在给定共聚物浓度情况下, 固定PEG嵌段长度而增加PCL嵌段长度, 会导致相变温度降低; 而固定PCL嵌段长度而增加PEG嵌段长度, 其相变温度相应升高. 水凝胶中蛋白药物的释放速率与疏水的PCL嵌段长度无关, 而与亲水的PEG嵌段长度密切相关, 即PEG嵌段越长, 蛋白药物释放越快.  相似文献   

17.
The synthesis and drug release properties of crosslinked N-isopropylacrylamide (NiPAAm) copolymer coatings on the surface of a hydrophobic poly(ester-urethane) tubing were examined. A method was designed to coat hydrophobic polymer surface with a thermosensitive gel layer. Crosslinked NiPAAm copolymer coatings were synthesized using UV-initiated polymerization. The feasibility of using NiPAAm based gels as heparin releasing thermosensitive coatings was investigated. Heparin, a high molecular weight hydrophilic solute, was loaded into hydrogels using a simple solution sorption technique. The release of heparin from NiPAAm copolymer gel coatings was compared to that of crosslinked NiPAAm copolymers. The gel coatings demonstrated a more gradual and prolonged heparin release as compared to gel disks of the same composition.  相似文献   

18.
Environmental switches may be fabricated for the controlled release of pharmaceutical drug using a thermally responsive polymer with the intrinsic chemical and physical nature of stimuli‐sensitive smart materials. Particularly, much attention has been paid to the biomedical applications of poly(N‐isopropyl acrylamide) (PNIPAAm) because of its unique reversible transition at a specific lower critical solution temperature (LCST).Thermally sensitive block copolymers, poly(N‐isopropyl acrylamide‐b‐poly(L ‐lactide‐co‐glycolide) (PNIPAAm‐b‐PLGA), and polyethylene glycol‐poly (lactide‐co‐glycolide) (PEG‐PLGA) triblock copolymers with different compositions and length of PLGA block were synthesized via ring‐opening polymerization of lactide and glycolide in the presence of OH‐terminated PNIPAAm or PEG. The composition and structure of the polymer were determined by NMR and FTIR. The effect of important factors, such as ionic strength, pH, and polymer concentration on the phase transition behavior of temperature‐sensitive polymers, were investigated by cloud point measurements. The resulting thermosensitive polymers were used for the entrapment of a narcotic antagonist drug, naltrexone, as the model drug. The loading efficiency and drug release behavior of naltrexone‐loaded hydrogels were investigated. The naltrexone loaded thermosensitive polymers were able to sustain the release of naltrexone for different periods of time, depending on the polymer composition, and concentration. In vitro release studies showed that these thermosensitive polymers are able to deliver naltrexone in biologically active forms at a controlled rate for 3–8 weeks. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The gelation behavior of aqueous solutions of poly(ethylene oxide-b-(DL-lactic acid-co-glycolic acid)-b-ethylene oxide) (PEO-PLGA-PEO) triblock copolymer containing short hydrophilic PEO end blocks is investigated using dynamic light scattering, rheology, small-angle neutron scattering (SANS), and differential scanning calorimetry (DSC). For polymer concentrations between 5 and 35 wt %, four distinct regions of the turbidity change depending on temperature were observed. Interestingly, in the turbid solution region, gel phase is formed for polymer concentrations above 14 wt % and an extremely slow relaxation was detected. In fact, a power law, which takes into account the dynamics of percolation clusters, dominates the correlation function. In rheological measurements, the local maximum in G' is observed at around the temperature of maximum turbidity. We further found that G" > G' and G' is highly dependent on frequency at the gel state implying viscoelastic characteristics, which is quite different from general concepts of gels, typically formed by the micellar packing. SANS profiles showing multiple peaks in the sol state rather than in the gel state as well as a DSC exotherm at the temperature of gels can also serve as the evidence of different gel states. Based upon the experimental data obtained in the present study, a new gelation mechanism induced by the macroscopic phase separation of triblock copolymers containing short hydrophilic PEO end blocks such as PEO-PLGA-PEO is proposed. The effect of the type ofhydrophobic middle blocks on the gelation is also discussed.  相似文献   

20.
A very straightforward approach was developed to synthesize pegylated thermoresponsive core‐shell nanoparticles in a minimum of steps, directly in water. It is based on RAFT‐controlled radical crosslinking copolymerization of N,N‐diethylacrylamide (DEAAm) and N,N′‐methylene bisacrylamide (MBA) in aqueous dispersion polymerization. Because DEAAm is water‐soluble and poly(N,N‐diethylacrylamide) (PDEAAm) exhibits a lower critical solution temperature at 32 °C, the initial medium was homogeneous, whereas the polymer formed a separate phase at the reaction temperature. The first macroRAFT agent was a surface‐active trithiocarbonate based on a hydrophilic poly(ethylene oxide) block and a hydrophobic dodecyl chain. It was further extented with N,N‐dimethylacrylamide (DMAAm) to target macroRAFT agents with increasing chain length. All macroRAFT agents provided excellent control over the aqueous dispersion homopolymerization of DEAAm. When they were used in the radical crosslinking copolymerization of DEAAm and MBA, the stability and size of the resulting gel particles were found to depend strongly on the chain length of the macroRAFT agent, on the concentrations of both the monomer and the crosslinker, and on the process (one step or two steps). The best‐suited experimental conditions to reach thermosensitive hydrogels with nanometric size and well‐defined surface properties were determined. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2373–2390, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号