首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
卢吴越  张永平  陈之战  程越  谈嘉慧  石旺舟 《物理学报》2015,64(6):67303-067303
采用快速热退火(rapid thermal annealing, RTA)法和脉冲激光辐照退火(laser spark annealing, LSA)法, 在n型4H-SiC的Si面制备出Ni电极欧姆接触. 经传输线法测得RTA样品与LSA样品的比接触电阻分别为5.2×10-4 Ω·cm2, 1.8× 10-4 Ω·cm2. 使用扫描电子显微镜、原子力显微镜、透射电子显微镜、拉曼光谱等表征手段, 比较了两种退火方式对电极表面形貌、电极/衬底截面形貌和元素成分分布、SiC衬底近表层碳团簇微结构的影响. 结果表明, 相比于RTA, LSA法制备出的欧姆接触在电极表面形貌、界面形貌、电极层组分均匀性等方面都具有明显优势, 有望使LSA成为一种非常有潜力的制备欧姆接触的退火处理方法.  相似文献   

2.
The controllable synthesis and characterization of novel thermally stable silver-based particles are described. The experimental approach involves the design of thermally stable nanostructures by the deposition of an interfacial thick, active titania layer between the primary substrate (SiO2 particles) and the metal nanoparticles (Ag NPs), as well as the doping of Ag nanoparticles with an organic molecule (Congo Red, CR). The nanostructured particles were composed of a 330-nm silica core capped by a granular titania layer (10 to 13 nm in thickness), along with monodisperse 5 to 30 nm CR-Ag NPs deposited on top. The titania-coated support (SiO2/TiO2 particles) was shown to be chemically and thermally stable and promoted the nucleation and anchoring of CR-Ag NPs, which prevented the sintering of CR-Ag NPs when the structure was exposed to high temperatures. The thermal stability of the silver composites was examined by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Larger than 10 nm CR-Ag NPs were thermally stable up to 300 °C. Such temperature was high enough to destabilize the CR-Ag NPs due to the melting point of the CR. On the other hand, smaller than 10 nm Ag NPs were stable at temperatures up to 500 °C because of the strong metal-metal oxide binding energy. Energy dispersion X-ray spectroscopy (EDS) was carried out to qualitatively analyze the chemical stability of the structure at different temperatures which confirmed the stability of the structure and the existence of silver NPs at temperatures up to 500 °C.  相似文献   

3.
Triangular and quadratic Cu pyramids were epitaxially grown on Si(111) and Si(100) substrates, respectively, by pulsed laser deposition at elevated substrate temperatures above 200°C as well as by post-annealing of closed Cu layers prepared at room temperature. In both cases, three-dimensional pyramids with edge lengths of up to 9 μm were obtained, as observed by scanning electron microscopy and atomic force microscopy. Although the macroscopic shape is a pyramid, microscopically the islands consist of columnar grains (with lateral sizes of only about 50 nm at 260°C). The size and shape of the pyramids can be controlled by the substrate used, the amount of material deposited, and the temperature during deposition or annealing. Additionally, first hints were found that the pyramids can be aligned by structuring the substrate. The formation of such large pyramids is explained by a fast diffusion of Cu atoms on Si over distances of some μm and a high jump probability to higher pyramid layers.  相似文献   

4.
Carbon nanotubes (CNTs) decorated with Cu2O particles were grown on a Ni catalyst layer deposited on a Cu substrate by thermal chemical vapor deposition from liquid petroleum gas. Ni catalyst nanoparticles with different sizes were produced in an electroplating system at 45 °C using the corrosive effect of H2SO4 which was added to solution. These nanoparticles provide the nucleation sites for CNT growth avoiding the need for a buffer layer. The surface morphology of the Ni catalyst films and CNT growth over this catalyst was studied by scanning electron microscopy (SEM). High temperature surface segregation of the Cu substrate into the Ni catalyst layer and its exposition to O2 at atmospheric environment, during the CNTs growth, lead to the production of CNTs decorated with about 6 nm Cu2O nanoparticles. We used SEM to study the surface characteristics of Ni catalyst films and characteristic of grown CNTs. Raman spectroscopy, transmission electron microscopy (TEM), electron diffraction (EDX), X-ray diffraction, and X-ray photoelectron spectroscopy (XPS) revealed the formation of CNTs. The selected area electron diffraction pattern, EDX, and XPS studies show that these CNTs were decorated with Cu2O nanoparticles. This way of fabrication is the easiest and lowest cost method.  相似文献   

5.
Samarium-doped calcium fluoride (CaF2) nanoparticles were synthesized by the co-precipitation method and characterized by powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), optical absorption and photoluminescence (PL) techniques. The PXRD patterns confirmed the cubic crystallinity of the synthesized nanoparticles. The average particle size estimated using Scherer's formula was ~20?nm. The purity of the synthesized nanoparticles was confirmed by the FTIR spectrum. The morphological features studied using SEM revealed that the nanoparticles were agglomerated and porous. The optical absorption spectrum showed a strong and prominent absorption peak at ~264?nm and a weak one at ~212?nm. The PL spectrum showed broad and prominent emissions with peaks at ~387 and 532?nm along with weak emissions at 573 and 605?nm.  相似文献   

6.
Growth and the optical properties of epitaxial heterostructures Si(111)/(CrSi2 nanocrystallites)/Si(111) based on nanosized islands of chromium disilicide (CrSi2) on Si(111) were studied using low-energy electron diffraction, atomic-force microscopy, and optical reflection and transmission spectroscopy. The heterostructures with thicknesses of 0.1, 0.3, 0.6, 1.0, and 1.5 nm were formed by reactive epitaxy at a temperature of 500°C followed by the epitaxial growth of silicon at 750°C. The specific features of changes in the density and sizes of CrSi2 islands on the silicon surface were determined at T = 750°C as the chromium layer thickness was increased. It was established that, in the heterostructures with chromium layer thicknesses exceeding 0.6 nm, a small part of faceted Cr2Si2 nanocrystallites (NCs) emerge into near-surface region of the silicon, which is confirmed by the data from optical reflectance spectroscopy and an analysis of the spectral dependence of the absorption coefficient. A critical size of NCs is shown to exist above which their shift to the silicon surface is hampered. The decreased density of emerging NCs at chromium layer thicknesses of 1.0–1.5 nm is associated with the formation of coarser NCs within a silicon layer, which is confirmed by the data from differential reflection spectroscopy.  相似文献   

7.
We report on the synthesis of conjugated polymer (CV-QP) containing carbazole (donor) and quinoline (acceptor) using Wittig methodology. The structural, optical and thermal properties of the polymer were investigated by FT-IR, NMR, GPC, UV, PL, cyclic voltammetry, atomic force microscopy (AFM) and thermogravimetric analysis (TGA). The polymer exhibits thermal stability upto 200 °C and shows good solubility in common organic solvents. The polymer has optical absorption band in a thin film at 360 nm and emission band formed at 473 nm. The optical energy band gap was found to be 2.69 eV as calculated from the onset absorption edge. Fluorescence quenching of the polymer CV-QP was found by using DMA (electron donor) and DMTP (electron acceptor). AFM image indicated that triangular shaped particles were observed and the particle size was found as 1.1 μm. The electrochemical studies of CV-QP reveal that, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the CV-QP are 6.35 and 3.70 eV, which indicated that the polymers are expected to provide charge transporting properties for the development of polymer light-emitting diodes (PLEDs).  相似文献   

8.
Cadmium selenide (CdSe) thin films were deposited on a glass substrate using the thermal evaporation method at room temperature. The changes in the optical properties (optical band gap and absorption coefficient) after irradiation by TEA N2 laser at different energies were measured in the wavelength range 190–800 nm using a spectrophotometer. It was found that the optical band gap is decreased after irradiating the thin films. The samples were characterized using X-ray diffraction (XRD), and the grain size of the CdSe thin film was calculated from XRD data, which was found to be 41.47 nm as-deposited. It was also found that grain size increases with laser exposure. The samples were characterized using a scanning electron microscope and it was found that big clusters were formed after irradiation by TEA N2 laser.  相似文献   

9.
Cluster-cluster coalescence process of monodispersed Co clusters with mean diameter d = 8.5 and 13 nm deposited a plasma-gas-condensation-type cluster beam deposition system was investigated by in situ electrical conductivity measurements and ex situ scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and analyzed by percolation concept. The electrical conductivity measurement and TEM observation indicated that, below temperature T≈ 100°C, the Co clusters in the assemblies maintain their original structure as deposited at room temperature, while that the inter-cluster coalescence takes place at T > 100°C, although the size distribution and the interface morphology of the clusters showed no marked change at substrate temperatures T s≤200°C. Received 29 November 2000  相似文献   

10.
Cadmium stannate (Cd2SnO4) thin films were prepared by the RF magnetron sputtering technique on glass substrates with substrate temperatures of room temperature (RT), 100°C, 200°C and 300°C. Photoacoustic analyses were made to obtain the thermal diffusivity and the optical bandgap values of the Cd2SnO4 thin films. The change in thermal diffusivity of the films with the substrate temperature was analyzed. The optical bandgap values obtained from the photoacoustic spectroscopy were compared with the values obtained from the optical transmittance spectra. X-ray photoelectron spectroscopic (XPS) studies confirm the formation of stoichiometric films. Surface morphological studies by atomic force microscopy (AFM) revealed the crystalline nature of the films deposited at 100°C.  相似文献   

11.
A Nd:YAG laser operating at the fundamental wavelength (1064 nm) and at the second harmonic (532 nm), with 9 ns pulse duration, 100–900 mJ pulse energy, and 30 Hz repetition rate mode, was employed to ablate in vacuum (10?6 mbar) biomaterial targets and to deposit thin films on substrate backings. Titanium target was ablated at the fundamental frequency and deposited on near-Si substrates. The ablation yield increases with the laser fluence and at 40 J/cm 2 the ablation yield for titanium is 1.2×1016 atoms/pulse. Thin film of titanium was deposited on silicon substrates placed at different distance and angles with respect to the target and analysed with different surface techniques (optical microscopy, scanning electron spectrosopy (SEM), and surface profile).

Hydroxyapatite (HA) target was ablated to the second harmonic and thin films were deposited on Ti and Si substrates. The ablation yield at a laser fluence of 10 J/cm 2 is about 5×1014 HA molecules/pulse. Thin film of HA, deposited on silicon substrates placed at different distance and angles with respect to the target, was analysed with different surface techniques (optical microscopy, SEM, and Raman spectroscopy).

Metallic films show high uniformity and absence of grains, whereas the bio-ceramic film shows a large grain size distribution. Both films found special application in the field of biomaterial coverage.  相似文献   

12.
An Al85Ni10La5 amorphous alloy, produced via gas atomization, was selected to study the mechanisms of nanocrystallization induced by thermal exposure. High resolution transmission electron microscopy results indicated the presence of quenched-in Al nuclei in the amorphous matrix of the atomized powder. However, a eutectic-like reaction, which involved the formation of the Al, Al11La3, and Al3Ni phases, was recorded in the first crystallization event (263°C) during differential scanning calorimetry continuous heating. Isothermal annealing experiments conducted below 263°C revealed that the formation of single fcc-Al phase occurred at 235°C. At higher temperatures, growth of the Al crystals occurred with formation of intermetallic phases, leading to a eutectic-like transformation behaviour at 263°C. During the first crystallization stage, nanocrystals were developed in the size range of 5 ~ 30 nm. During the second crystallization event (283°C), a bimodal size distribution of nanocrystals was formed with the smaller size in the range of around 10 ~ 30 nm and the larger size around 100 nm. The influence of pre-existing quenched-in Al nuclei on the microstructural evolution in the amorphous Al85Ni10La5 alloy is discussed and the effect of the microstructural evolution on the hardening behaviour is described in detail.  相似文献   

13.
Ordered and perpendicular columnar arrays of In2O3 were synthesized on conducting ITO electrode by a simple glancing angle deposition (GLAD) technique. The as-deposited In2O3 columns were investigated by field emission gun-scanning electron microscope (FEG-SEM). The average length and diameter of the columns were estimated ~400 nm and ~100 nm, respectively. The morphology of the structure was examined by transmission electron microscopy (TEM). X-ray diffraction (XRD) analysis shows the polycrystalline nature of the sample which was verified by selective area electron diffraction (SAED) analysis. The growth mechanism and optical properties of the columns were also discussed. Optical absorption shows that In2O3 columns have a high band to band transition at ~3.75 eV. The ultraviolet and green emissions were obtained from the In2O3 columnar arrays. The P-N junction was formed between In2O3 and P-type Si substrate. The GLAD synthesized In2O3 film exhibits low current conduction compared to In2O3 TF. However, the Si/GLAD-In2O3 detector shows ~1.5 times enhanced photoresponsivity than that of Si/In2O3 TF.  相似文献   

14.
Pure-phase RuO2 nanoparticles were obtained by thermal decomposition of unirradiated and γ-irradiated Ru-tris-acetylacetonate precursors. Several influencing factors including absorbed dose, calcination times and temperatures and addition of surfactants were thoroughly investigated. The newly synthesized RuO2 nanoparticles were characterized by X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The results showed that the best conditions for the preparation of mono-dispersed RuO2 nanoparticles were achieved by calcinations of unirradiated Ru-tris-acetylacetonate for 6 h at 600°C. For γ-irradiated Ru-tris-acetylacetonate with 102 Gy total γ-ray doses, the optimal conditions for RuO2 preparation were calcination for 2 h at 200°C. Thermal stability of RuO2 nanoparticles was studied using thermogravimetric (TG) and differential thermal analysis (DTA) techniques, and the results were evaluated and discussed.  相似文献   

15.
In this paper we report on the effects of the insertion of Cr atoms on the electrical and optical properties of indium tin oxide (ITO) films to be used as electrodes in spin-polarized light-emitting devices. ITO films and ITO(80 nm)/Cr-doped ITO(20 nm) bilayers and Cr-doped ITO films with a thickness of 20 nm were grown by pulsed ArF excimer laser deposition. The optical, structural, morphological and electrical properties of ITO films and ITO/Cr-doped structures were characterized by UV–Visible transmission and reflection spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and Hall-effect analysis. For the different investigations, the samples were deposited on different substrates like silica and carbon coated Cu grids. ITO films with a thickness of 100 nm, a resistivity as low as ~4×10?4 Ω?cm, an energy gap of ~4.3 eV and an atomic scale roughness were deposited at room temperature without any post-deposition process. The insertion of Cr into the ITO matrix in the upper 20 nm of the ITO matrix induced variations in the physical properties of the structure like an increase of average roughness (~0.4–0.5 nm) and resistivity (up to ~8×10?4 Ω?cm). These variations were correlated to the microstructure of the Cr-doped ITO films with particular attention to the upper 20 nm.  相似文献   

16.
ZnGa2O4 nanowires were synthesized using a thermal evaporation technique. Scanning electron microscopy, transmission electron microscopy, and X-ray diffraction revealed that the nanowires were single crystals 30–200 nm in diameter and ranged up to ~100 μm in length. The sensing properties of multiple networked ZnGa2O4 nanowire sensors functionalized with Au catalyst nanoparticles with diameters of a few nanometers toward NO2 gas at room temperature under UV irradiation were examined. The sensors showed a remarkably enhanced response and far reduced response and recovery times toward NO2 gas at room temperature under 254 nm-ultraviolet (UV) illumination. The response of ZnGa2O4 nanowires to NO2 gas at room temperature increased from ~100 to ~861 % with increasing the UV intensity from 0 to 1.2 mW/cm2. The significant improvement in the response of ZnGa2O4 nanowires to NO2 gas by UV irradiation is attributed to the increased change in resistance due to the increase in the number of electrons participating in the reactions with NO2 molecules by photo-generation of electron–hole pairs.  相似文献   

17.
The film of thermoelectric ternary p-type (Bi0.15Sb0.85)2Te3 was deposited on polyimide foil substrate at 168 °C using direct-current magnetron sputtering. Microstructural investigations of the film were performed by electron microscopy techniques. SEM observations showed that the film surface consisted of large-sized particulates with small-sized particles and also mound-like crystal agglomerates in some areas. Chemical composition of the film was analyzed using energy-dispersive X-ray spectrometer (EDS). It has been observed that the EDS results were in an agreement with nominal composition for the film. Detailed microstructural investigations were carried out using transmission electron microscopy (TEM). TEM images and selected area electron diffraction patterns showed that the film has randomly oriented polycrystalline grain structure. High-resolution TEM images indicated that the microstructure of film also contained nano-crystal structure, smaller than 10 nm.  相似文献   

18.
The development and spectroscopic performance evaluation of an ultra-sensitive, mid-IR spectrometer is reported. The laser system is based upon difference-frequency generation (DFG) at ~3.5 μm by mixing a DFB diode laser at 1562 nm and a DFB fiber laser at 1083 nm using a periodically poled LiNbO3 crystal. DFG radiation was coupled to a 100?m optical path length astigmatic Herriott cell. Sensitive and selective spectroscopic detection of formaldehyde was performed with second-harmonic detection using Peltier-cooled HgCdTe detectors. By applying computer lock-ins, dual-beam optical noise subtraction, focus matching, thermal stabilization, active wavelength control, and advanced signal processing a sensitivity corresponding to an absorbance ~1.6×10-7 is achieved for 260 s of averaging.  相似文献   

19.
We have fabricated SiGe quantum dots (QDs) by means of a two-step Si ion implantation followed by thermal rapid thermal annealing (RTA) method. SiGe QDs with the 4–6 nm diameter are formed uniformly in the near-surface region of Ge substrate. The RTA processes are performed at 800 and 900 °C for 15 s, respectively. Both experimental and theoretical analysis indicates that the higher temperature (900 °C) RTA can enhance the growth of SiGe QDs. Two photoluminescence peaks are observed near 572 and 581 nm at room temperature. The mechanism of the luminescence from SiGe QDs is discussed.  相似文献   

20.
The nanostructuring of dielectrics is a big challenge for laser patterning methods. In this study a novel laser structuring method for the fabrication of randomly distributed nanostructures, called laser-induced front side etching using in situ pre-structured metal layers (IPSM-LIFE), is presented. The pulsed laser irradiation of a thin metal film deposited onto a dielectric substrate with fluences below the ablation threshold results in the formation of randomly distributed metal structures by self-assembly processes. Further pulsed laser irradiation of these metal structures with higher or equal laser fluences causes the formation of complex patterns at the surface of the dielectric due to localized ablation and melting processes of the dielectric surface induced by the absorption of the laser energy by the metal structures and the local energy transfer into the dielectric surface. The pattern formation observed in the film and the dielectrics substrate after irradiation of 10 nm chromium layers on fused silica, with laser pulses (Δt p =25 ns, λ=248 nm), was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Different features with a lateral size down to a few tens of nanometers, like concentric ring patterns, donut-like structures, and bar patterns were observed at the dielectric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号