首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The expansion of the laser-induced bubble is the main mechanism in the developed microjet injector. In this study, Nd:YAG and Er:YAG lasers are used as triggers of the bubble formation. The impact of the laser parameters on the bubble dynamics is studied and the performance of the injector is evaluated. We found that the main cause of the differences in the bubble behavior comes from the pulse duration and wavelength. For Nd:YAG laser, the pulse duration is very short relative to the bubble lifetime making the behavior of the bubble close to that of the cavitation bubble, while in Er:YAG case, the high absorption in the water and long pulse duration change the initial behavior of the bubble making it close to a vapor bubble. The contraction and subsequent rebound are typical for cavitation bubbles in both cases. The results show that the laser-induced microjet injector generates velocity which is sufficient for the drug delivery for both laser beams of different pulse duration. We estimate the typical velocity within 30–80 m/s range and the breakup length to be larger than 1 mm suitable for trans-dermal drug injection.  相似文献   

2.
The nucleation and growth of cavitation bubbles few micrometers in size in water generated by a 60 ps 515 nm fiber laser is observed and visualized near nucleation threshold. The study is performed by monitoring the plasma size, the cavitation bubble size and the emitted shock waves. The latter two aspects are supported by the Gilmore model using a Noble-Abel-stiffened-gas (NASG) equations of state. For the first time, two types of cavitation events are identified and visualized that exhibit a difference of more than two orders of magnitude in the excitation energy converted to mechanical effects with minimal change in excitation laser pulse energy. The result is localized cavitation and reduced mechanical stress on water-based media with potentially positive implications for laser treatments of biological tissue.  相似文献   

3.
A nanosecond pulse laser generates acoustic waves on a water-material interface. The absorbed beam energy heats and thermoelastically expands the material. The thermoelastic stress of a material is dependent on its absorbance and expansion coefficient. In this work, we used a composite of reduced graphene oxide (RGO) and aluminum thin film to increase the efficiency of conversion from beamed energy to thermoelastic stress. A laser shadowgraph showed enhanced acoustic waves propagating at ~1,500 m/s under water. The effect of RGO on ultrasound generation is examined for different thicknesses of RGO at several laser fluences. The pressure of laser-induced ultrasound on the RGO–aluminum composite was measured to be up to 59 times greater than that produced with an aluminum film alone, and the frequency of laser-induced ultrasound was determined by the thermoelastic response. The strong intensity and broad bandwidth of the laser-induced acoustic wave suggested enhanced repetition time and resolution required for biomedical imaging.  相似文献   

4.
Dynamics of laser-induced cavitation bubbles on different wedge-shaped propelled surfaces, including 30°-surfaces, 90°-surfaces and 180°-surfaces, were investigated for laser propulsion in water environment by means of an optical beam deflection method. The expansion of the bubble on the three kinds of surfaces was simulated numerically. The pressure fields on the inner side of the surfaces and the energy that the propelled surfaces received from the expanding bubble were investigated numerically. For the three kinds of surfaces, the collapse times of the nonspherical bubbles were all less than the Rayleigh collapse time of the spherical bubble. The bubble on a narrow-shaped surface grew faster in a certain direction, which indicates that the propelling force was concentrated spatially and temporally. However, the most narrow-shaped surface did not get the most propelling energy. The repetition rate and spatial array density of the laser pulse cannot be too high, because of the scattering effect of the bubble. As a result of the laser plasma shielding and bubble scattering, high pulse energy does not necessarily result in a high propelling force. The narrow-shaped surfaces experienced higher shock damage, and emitted stronger noise.  相似文献   

5.
Lithotripter shock waves (SWs) generated in non-degassed water at 0.5 and 2 Hz pulse repetition frequency (PRF) were characterized using a fiber-optic hydrophone. High-speed imaging captured the inertial growth-collapse-rebound cycle of cavitation bubbles, and continuous recording with a 60 fps camcorder was used to track bubble proliferation over successive SWs. Microbubbles that seeded the generation of bubble clouds formed by the breakup of cavitation jets and by bubble collapse following rebound. Microbubbles that persisted long enough served as cavitation nuclei for subsequent SWs, as such bubble clouds were enhanced at fast PRF. Visual tracking suggests that bubble clouds can originate from single bubbles.  相似文献   

6.
A method for degrading organic pollutants in suspension by applying laser-induced cavitation is presented. Cavitation bubbles are produced remotely by laser beams, achieving a purpose of non-contact degradation. In this work, laser-induced bubble dynamics in SiO2 sand suspension were studied by high-speed imaging. Pulsating characteristics of cavitaiton bubbles in the infinite domain and near a solid boundary were investigated among various laser energies and sand concentrations. Furthermore, the extent of degradation after processing in suspension and the mechanism were analyzed. Results indicate that solid particles in the liquid medium reduce the extent of degradation. However, the extent of degradation may rebound at a proper sand concentration. In addition, compared to several small bubbles in a bubble string (in the infinite domain), a single larger bubble (near a solid boundary) has a much higher degradation ability.  相似文献   

7.
The detailed study of the initial and collapse processes of the laser-induced cavitation requires nanosecond resolution (both nanoseconds exposure and nanoseconds interframe time) of the photography measurement system. The high-speed video cameras are difficult to achieve nanoseconds interval time. The framing and streak cameras are able to reach the nanosecond resolution, but their complex technology and expensive prices make them far from being commercially available. The present study builds a nanosecond resolution photography system based on PIV dual-head laser and conventional industrial camera. The exposure time of the photography system is controlled by the laser pulse width, which is 5 ns. The two heads of the PIV laser are operated independently thus the smallest time interval between two laser pulses can be set to less than 10 ns. A double-pulse per-exposure imaging technique is used to record the information from two laser pulses on single frame on a low-speed industrial camera. The nanosecond resolution photography system was applied to the laser-induced cavitation experiments to verify the reliability of the measurement results. The measurement of the shock wave velocity demonstrates the ability of the system to capture ultrafast phenomena, which reduces from 3611 m/s to approximately 1483 m/s within 400 ns. The experimental results also reveal the asymmetric evolution of laser-induced cavitation bubbles. The major axis of the ellipsoidal bubble has twice reversals along the laser propagation and perpendicular direction from the laser-induced breakdown to the first collapse.  相似文献   

8.
One of the main applications of ultrasonic melt treatment is the grain refinement of aluminium alloys. Among several suggested mechanisms, the fragmentation of primary intermetallics by acoustic cavitation is regarded as very efficient. However, the physical process causing this fragmentation has received little attention and is not yet well understood. In this study, we evaluate the mechanical properties of primary Al3Zr intermetallics by nano-indentation experiments and correlate those with in-situ high-speed imaging (of up to 1 Mfps) of their fragmentation process by laser-induced cavitation (single bubble) and by acoustic cavitation (cloud of bubbles) in water. Intermetallic crystals were chemically extracted from an Al-3 wt% Zr alloy matrix. Mechanical properties such as hardness, elastic modulus and fracture toughness of the extracted intermetallics were determined using a geometrically fixed Berkovich nano-diamond and cube corner indenter, under ambient temperature conditions. The studied crystals were then exposed to the two cavitation conditions mentioned. Results demonstrated for the first time that the governing fragmentation mechanism of the studied intermetallics was due to the emitted shock waves from the collapsing bubbles. The fragmentation caused by a single bubble collapse was found to be almost instantaneous. On the other hand, sono-fragmentation studies revealed that the intermetallic crystal initially underwent low cycle fatigue loading, followed by catastrophic brittle failure due to propagating shock waves. The observed fragmentation mechanism was supported by fracture mechanics and pressure measurements using a calibrated fibre optic hydrophone. Results showed that the acoustic pressures produced from shock wave emissions in the case of a single bubble collapse, and responsible for instantaneous fragmentation of the intermetallics, were in the range of 20–40 MPa. Whereas, the shock pressure generated from the acoustic cavitation cloud collapses surged up to 1.6 MPa inducing fatigue stresses within the crystal leading to eventual fragmentation.  相似文献   

9.
10.
In this paper the characteristics (such as amplitude, width) of a laser-induced shock wave under confining conditions is studied. For engineering applications, a physical study of this method is useful in order to optimize this technique. We have first introduced a new pressure gauge – PVDF (polyvenyliden fluoride) gauge with short rise time and wide linear response range. Experimentally, by measuring the generated pressures under different confining materials, the relationship between the pressures and the acoustic impedance of confining materials, is illustrated, which somewhat agrees with the theoretical calculation. We have also found that under confining conditions laser-induced shock waves persist longer than a laser pulse. Then, the effects of black paint overlay (absorptive overlay) is studied. We experimentally point out that a black paint overlay placed before an irradiated target can greatly increase the generated pressure under any confining material in our experiments for its beneficial effect on the plasma-generating process. To our surprise, comparing the impulse ( ), which the shock wave induced under absorptive overlay executes on the target, to that induced under no black paint overlay, the increase ratio is approximately equal.  相似文献   

11.
Photomechanical fracture induced by thermoelastic stress waves is an important mechanism of tissue ablation by short laser pulses. In this study, we present experimental investigations of the fracture process in ductile, water-containing materials and compare the results with a theoretical calculation. The model describes cavitation caused by the negative part of a bipolar thermoelastic stress wave. Pulses from aQ-switched, frequency-doubled Nd:YAG laser with 8 ns duration were used to irradiate dyed water and gelatine with variable absorption coefficient. Cavitation and ablation were observed with various time-resolved methods such as stress detection, video imaging and an optical pump-probe technique for the detection of individual cavities. Quantitative agreement between experiment and simulation could be achieved in the case of cavity lifetimes, especially at low laser fluence where the bubble density is low and no coalescence takes place. An increase of the threshold energy density for ablation with rising absorption coefficient and a distortion of the thermoelastic wave in the presence of cavitation were experimentally observed and could be qualitatively explained by use of the simulation. The results obtained in this study should facilitate the choice of the optimal laser parameters for photomechanical tissue ablation.  相似文献   

12.
13.
After the photoexcitation by a femtosecond laser pulse inside a LiF single crystal, four cracks appear in the <110> directions of the crystal from the photoexcited region. In our previous study, we found that a femtosecond laser-induced stress wave is responsible for generation and elongation of cracks inside a LiF single crystal. This finding suggests that we can control laser-induced cracks by modulating laser-induced stress waves. In this study, we applied parallel fs laser irradiation with a spatial light modulator to generate multiple stress waves at the same time, and found the modulation of crack formation; one crack became thinner and shorter than any other cracks. By a pump-probe imaging of dynamics of crack generation, we showed that the constructive interference of stress waves at a crack tip could compress the crack, which results in a thinner and shorter crack.  相似文献   

14.
The laser shock cleaning (LSC) method has recently attracted substantial attention since it can remove micro/nano-scale contaminant particles from a solid surface without direct exposure of the surface to laser irradiation. However, despite the importance of the particle detachment and redeposition mechanisms in the LSC process, the behavior of the particles during the cleaning process has never been analyzed experimentally. In this work, the motion of the micrometer-scale particles detached by a laser-induced plasma/shock wave is visualized by a photoluminescence imaging technique. The technique yields time-resolved particle trajectories under typical conditions of the LSC process, with and without a gas jet blowing. Discussions are made on the behavior of the detached particles and redeposition mechanisms.  相似文献   

15.
The effect of ambient environment (dry or wet) and overlapping laser pulses on the laser ablation performance of brass has been investigated. For this purpose, a Q-switched, frequency doubled Nd:YAG laser with a wavelength of 532 nm, pulse energy of 150 mJ, pulse width of 6 ns and repetition rate of 10 Hz is employed. In order to explore the effect of ambient environments, brass targets have been exposed in deionized water, methanol and air. The targets are exposed for 1000, 2000, 3000 and 4000 succeeding pulses in each atmosphere. The surface morphology and chemical composition of ablated targets have been characterized by using Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM) and Attenuated Total Reflection (ATR) techniques. In case of liquid environment, various features like nano- and micro-scale laser-induced periodic surface structures with periodicity 500 nm–1 μm, cavities of size few micrometers with multiple ablative layers and phenomenon of thermal stress cracking are observed. These features are originated by various chemical and thermal phenomena induced by laser heating at the liquid–solid interfaces. The convective bubble motion, explosive boiling, pressure gradients, cluster and colloid formation due to confinement effects of liquids are possible cause for such kind of features. The metal oxides and alcohol formed on irradiated surface are also playing the significant role for the formation of these kinds of structure. In case of air one huge crater is formed along with the redeposition of sputtered material and is ascribed to laser-induced evaporation and oxide formation.  相似文献   

16.
Cavitation bubbles collapsing in the vicinity to a solid substrate induce intense micro-convection at the solid. Here we study the transient near-wall flows generated by single collapsing bubbles by chronoamperometric measurements synchronously coupled with high-speed imaging. The individual bubbles are created at confined positions by a focused laser pulse. They reach a maximum expansion radius of approximately 425 μm. Several stand-off distances to the flat solid boundary are investigated and all distances are chosen sufficiently large that no gas phase of the expanding and collapsing bubble touches the solid directly. With a microelectrode embedded into the substrate, the time-resolved perturbations in the liquid shear layer are probed by means of a chronoamperometric technique. The measurements of electric current are synchronized with high-speed imaging of the bubble dynamics. The perturbations of the near-wall layer are found to result mainly from ring vortices created by the jetting bubble. Other bubble induced flows, such as the jet and flows following the radial bubble oscillations are perceptible with this technique, but show a minor influence at the stand-off distances investigated.  相似文献   

17.
A single-crystal CaF2 (111) was irradiated with single and multiple laser (Ti:sapphire, 800 nm, 25 fs) shots at fluences ranging from 0.25 to 1.5 J cm?2. In this fluence regime, a single laser pulse usually leads to typical bump-like features ranging from 200 nm to 1.5 μm in diameter and 10–50 nm in height. These bumps are related to compressive stresses due to a pressure build-up induced by fast laser heating and their subsequent relaxation. When CaF2 is irradiated with successive (in our case 20) shots at a laser fluence of 1.5 J cm?2, nanocavities at the top of the microbumps are observed. The formation of these nanocavities is regarded as an explosion and is attributed to the explosive expansion generated by shock waves due to laser-induced plasma after the nonlinear absorption of the laser energy by the material. Such kinds of surface structures at the nanometre scale could be attractive for nanolithography.  相似文献   

18.
The dynamic features of nanosecond laser-induced cavitation bubbles near the light alloy boundary were investigated with the high-speed photography. The shock-waves and the dynamic characteristics of the cavitation bubbles generated by the laser were detected using the hydrophone. The dynamic features and strengthening mechanism of cavitation bubbles were studied. The strengthening mechanisms of cavitation bubble were discussed when the relative distance parameter γ was within the range of 0.5–2.5. It showed that the strengthening mechanisms caused by liquid jet or shock-waves depended on γ much. The research results provided a new strengthening method based on laser-induced cavitation shotless peening (CSP).  相似文献   

19.
Time-resolved laser-induced incandescence (LII) signal of soot in an ethylene laminar diffusion flame was measured with varying laser pulse durations in the range 50–600 ns. This study presents original results since the majority of LII studies reported are based on 7–10-ns pulse duration. The LII signal from soot is a combination of heating and cooling processes of different time scales, and the influence of the pulse duration is therefore particularly relevant. The most striking finding is that when the pulse durations is longer than approximately 100 ns, the time-resolved LII signal reveals a rebound of the LII signal during its slow decaying part. This feature occurs preferably at high fluence and is unexpected as none of the physical and chemical processes known to control LII signal behaviour, and their models suggest such an effect. The phenomenon occurs with both top hat and near Gaussian temporal laser shapes. Inspection of the time-resolved emission spectra shows no indication of a laser-induced fluorescence effect, although gas-phase PAH generated during the laser heating of soot particles cannot be rejected. Other hypotheses are that the mechanism responsible for that behaviour is linked to a slow rate change of the soot morphological characteristics or to the generation of new particles during the long-duration laser excitation. Finally, experiments show that soot volume fraction measured by integrating the temporal LII signal is not affected by the pulse duration in any regions of the flame, implying that the LII method is applicable with long pulse duration lasers.  相似文献   

20.
声光协同作用下金纳米颗粒表面空化泡的动力学研究   总被引:2,自引:0,他引:2  
在激光和超声的协同作用下,金纳米颗粒表面会产生空化气泡。本文通过观察各种参数条件下空化泡的振荡变化,研究了激光光热、超声空化及其协同效应。研究发现,光热作用和激励声压的改变可以调节气泡的动力学过程,光热效应的增强有利于气泡的膨胀,激励声压的增加可以提高气泡运动的剧烈程度。两者的协同作用可以使气泡稳定存在并经历不同的振荡过程。此外,激光与超声协同方式的变化对气泡的运动过程有一定影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号