首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Zinc oxide (ZnO) films have been prepared by thermal oxidation of pre-deposited zinc films on the glass substrate kept at room temperature. These films were surface modified by dipping them into an aqueous solution (0.1 M) of lithium chloride (LiCl) and aluminium chloride (AlCl3) followed by firing at 500°C. Based on X-ray diffraction results it is observed that modification of pure ZnO by lithium and aluminium precursor results a change in the lattice parameters. Li and Al ions appear to enhance the a-axis orientation and c-axis orientation of pure ZnO films, respectively. Field emission scanning electron micrographs of lithium-modified ZnO film indicate the presence of nanoneedles, while nanorods are observed in case of aluminium-modified ZnO film. The electrical resistance measurements of modified ZnO films also show variation in resistance as compared to pure ZnO film. Pure and Al-modified films of ZnO are sensitive to ammonia at room temperature, while Al-modified ZnO film is found to be more sensitive with 99% of response at 250 ppm.  相似文献   

2.
A series of cauliflower-like TiO2-ZnO composite porous films with various molar ratios of Zn/Ti were prepared by the screen printing technique on the fluorine-doped SnO2 (FTO) conducting glasses. The composite films were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray energy-dispersive spectrometry (EDS) and UV-vis transmittance spectrum. The results showed composite film electrode had a novel cauliflower-like morphology, which could effectively increase the dye absorption. The corresponding dye-sensitized solar cells (DSCs) were made by the composite film, and effects of ZnO incorporation on the photovoltaic performances of the DSCs were studied. With the Zn/Ti molar ratio not more than 3% in ZnO-TiO2 composite film of about 5 μm-thickness, the photocurrent density (Jsc) and the solar-to-electricity conversion efficiency (η) were greatly improved compared with those of the DSC based on bare TiO2 film of same thickness. This increases in efficiency and Jsc were attributed to high electron conductivity of ZnO, the improved dye adsorption and large light transmittance of composite film.  相似文献   

3.
We examine the effects of the oxygen plasma pre-treatments on the material properties of n-ZnO grown on p-Si and characterize the electrical properties of n-ZnO/p-Si heterojunction diodes. The lattice spacing of ZnO becomes larger when the ZnO thin film is grown on the oxygen plasma pre-treated Si substrate. This might be relevant to the growth of (101) ZnO onto the ultra-thin SiO2 interfacial layer, which is formed during the oxygen plasma pre-treatment onto the Si substrate. The formation of SiO2 gives rise to the increase in the donor-like defect Zn interstitial, and the increased grain size improves the carrier mobility. Because of all the above, the differential conductance at the on-state is increased for the n-ZnO/p-Si heterojunction diode.  相似文献   

4.
We report the influence of Al concentration on electrical, structural, optical and morphological properties of Al-As codoped p-ZnO thin films using RF magnetron sputtering. Al-As codoped p-ZnO films with different Al concentrations were fabricated using As back diffusion from the GaAs substrate and sputtering Al2O3 mixed ZnO targets (1, 2 and 4 at%). The grown films were investigated by Hall effect measurement, X-ray diffraction (XRD), electron probe microanalysis (EPMA), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and atomic force microscopy (AFM) to study the electrical, structural, optical and morphological properties of the films. From the XRD, it was observed that both full-width at half-maximum (FWHM) and c-axis lattice constant have similar trends with respect to Al concentration. Hall measurements showed that the hole concentration increases as the Al concentration increases from 1015 to 1020 cm−3. The increase in hole concentration upon codoping was supported by the red shift in the near-band-edge (NBE) emission observed from room temperature PL spectra. The proposed p-type mechanism due to AsZn-2VZn complex was confirmed by low temperature PL and XPS analysis. The low FWHM, resistivity and peak-to-valley roughness observed by XRD, Hall measurement and AFM, respectively, suggest that 1 at% Al-doped ZnO:As film is the best codoped film.  相似文献   

5.
This paper presents further insights and observations of the chemical bath deposition (CBD) of ZnS thin films using an aqueous medium involving Zn-salt, ammonium sulfate, aqueous ammonia, and thioure. Results on physical and chemical properties of the grown layers as a function of ammonia concentration are reported. Physical and chemical properties were analyzed using scanning electron microscopy (SEM), X-ray energy dispersive (EDX), and X-ray diffraction (XRD). Rapid growth of nanostructured ZnO films on fluorine-doped SnO2 (FTO) glass substrates was developed. ZnO films crystallized in a wurtzite hexagonal structure and with a very small quantity of Zn(OH)2 and ZnS phases were obtained for the ammonia concentration ranging from 0.75 to 2.0 M. Flower-like and columnar nanostrucured ZnO films were deposited in two ammonia concentration ranges, respectively: one between 0.75 and 1.0 M and the other between 1.4 and 2.0 M. ZnS films were formed with a high ammonia concentration of 3.0 M. The formation mechanisms of ZnO, Zn(OH)2, and ZnS phases were discussed in the CBD process. The developed technique can be used to directly and rapidly grow nanostructured ZnO film photoanodes. Annealed ZnO nanoflower and columnar nanoparticle films on FTO substrates were used as electrodes to fabricate the dye sensitized solar cells (DSSCs). The DSSC based on ZnO-nanoflower film showed an energy conversion efficiency of 0.84%, which is higher compared to that (0.45%) of the cell being constructed using a photoanode of columnar nanoparticle ZnO film. The results have demonstrated the potential applications of CBD nanostructured ZnO films for photovoltaic cells.  相似文献   

6.
In order to investigate the relation among the superconducting transition Tc, carrier density n, resistivity ρ and the microstructure in the polycrystalline (In2O3)1?x–(ZnO)x films, we prepared specimen films by post annealing of amorphous films with x = 0.025 at various annealing temperature Ta and for annealing time ta = 1 h and 4 h. As for microstructures, we have investigated the distribution of elements by scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). We have found followings: (1) The annealed films clearly show the superconductivity of which Tc depends on Ta, ta and n. This indicates that the superconductivity is determined by the combination of crystallinity and carrier density. (2) The data on STEM–EELS spectra mapping of indium plasmon indicate that droplets of the pure indium phase exist inside a film, where the distribution of these droplets dispersed. Therefore, it seems that droplets do not form an electrical conducting path, that is, it is possible that observed superconductivity is due to intrinsic characteristic of polycrystalline (In2O3)1?x–(ZnO)x films.  相似文献   

7.
《Current Applied Physics》2015,15(11):1353-1357
The Al-doped ZnO (ZnO:Al) front transparent conducting oxide (TCO) for high efficiency Si thin-film solar cell has been developed using RF magnetron sputtering deposition and chemical wet etching. Microscopic surface roughness of the as-deposited ZnO:Al film estimated by spectroscopic ellipsometry is closely related to the compactness of the TCO film, and shown to be a straightforward and powerful tool to optimize the deposition conditions for the proper post-etched surface morphology. Wet-etching time is adjusted to form the U-shaped craters on the surface of the ZnO:Al film without sharp etch pits that can cause the crack-like defects in the overgrown microcrystalline Si-absorbing layers, and deteriorate the Voc and FF of the Si thin-film solar cells. That is to say, the nanoroughness control of the as-deposited TCO film with proper chemical etching is the key optimization factor for the efficiency of the solar cell. The a-Si:H/a-SiGe:H/μc-Si:H triple junction Si thin-film solar cells grown on the optimized ZnO:Al front TCO with anti-reflection coatings show higher than 14% conversion efficiency.  相似文献   

8.
The effects of deposition conditions on the physical and electrical performance of the n-ZnO/p-Si heterojunction were systematically investigated. ZnO films were deposited on the Si and glass substrates using direct current (DC) magnetron sputtering with various ambients and substrate temperatures. The results showed that increasing the O2 content and substrate temperature during the deposition process could improve the crystallinity and stoichiometry of the ZnO film, resulting in a lower carrier concentration and higher resistivity. The electrical properties of the n-ZnO/p-Si heterojunctions were also affected by the deposition parameters. For the junctions fabricated in the pure Ar ambient, the sample deposited at room temperature (RT) showed Ohmic behavior, while the one deposited at 300?°C exhibited poor rectifying behavior. On the other hand, the junctions fabricated in the O2/Ar ambient possessed ideal rectifying behaviors. The different carrier transport mechanisms for the heterojunctions under forward and reverse bias were systematically studied using a high temperature current–voltage (I-V) measurement. The recombination-tunneling current showed temperature insensitive performance while the space-charge limited current (SCLC) changed with the measurement temperature.  相似文献   

9.
Using transmission electron microscopy, a new nano-phase structure of Zn0.75Ox induced by Zn-vacancy has been discovered to grow on wurtzite ZnO nanobelts. The superstructure grows epitaxial from the surface of the wurtzite ZnO nanobelts and can be fitted as an orthorhombic structure, with lattice parameters a′=2a, and c′=c, where a and c are the lattice parameters of ZnO. The superstructured phase is resulted from high-density Zn vacancies orderly distributed in the ZnO matrix. This study provides direct observation about the existence of Zn-vacancies in ZnO.  相似文献   

10.
Al-N codoped p-type ZnO thin films have been prepared by DC magnetron reactive sputtering reproducibly using a high-temperature (HT) homo-buffer layer. The influence of HT buffer layer deposition time (Tht) on film properties was investigated by X-ray diffraction (XRD), scanning electron micro-spectra (SEM) and Hall measurement. The Al-N codoped ZnO film was improved evidently in its crystal quality by varying the value of Tht. Results of Hall effect showed that all of the Al-N codoped ZnO thin films were p-type conduction and had resistivity mainly below 50 Ω cm. The optimum deposition time of HT buffer layer is around 3 min from the comprehensive consideration of structural, electrical, and optical properties. The obtained ZnO thin film can meet the need of application in optoelectronic devices based on ZnO.  相似文献   

11.
《Current Applied Physics》2018,18(12):1564-1570
Charge transport dynamics in ZnO based inverted organic solar cell (IOSC) has been characterized with transient photocurrent spectroscopy and localised photocurrent mapping-atomic force microscopy. The value of maximum exciton generation rate was found to vary from 2.6 × 1027 m−3s−1 (Jsat = 79.7 A m−2) to 2.9 × 1027 m−3s−1 (Jsat = 90.8 A m−2) for devices with power conversion efficiency ranging from 2.03 to 2.51%. These results suggest that nanorods served as an excellent electron transporting layer that provides efficient charge transport and enhances IOSC device performance. The photovoltaic performance of OSCs with various growth times of ZnO nanorods have been analysed for a comparison between AM1.5G spectrum and local solar spectrum. The simulated PCE of all devices operating under local spectrum exhibited extensive improvement with the gain of 13.3–13.7% in which the ZnO nanorods grown at 15 min possess the highest PCE under local solar with the value of 2.82%.  相似文献   

12.
In this work, ZnO thin films covered by TiO2 nanoparticles (labeled as TiO2-ZnO thin films) were prepared by electron beam evaporation. The influence of annealing temperature on the photoluminescence property of the samples was studied. The structures and surface morphologies of the samples were analyzed by X-ray diffraction (XRD) and atomic force microscope, respectively. The photoluminescence was used to investigate the fluorescent properties of the samples. The measurement results show that the ultraviolet emission of ZnO thin films is largely enhanced after they are covered by TiO2 nanoparticles, while the green emission is suppressed. However, when the annealing temperature is relatively high (≥500 °C), the intensity of ultraviolet emission drops off and a violet emission peak along with a blue emission peak appears. This is probably connected with the atomic interdiffusion between TiO2 nanoparticles and ZnO thin film. Therefore, selecting a suitable annealing temperature is a key factor for obtaining the most efficient ultraviolet emission from TiO2-ZnO thin films.  相似文献   

13.
利用激光脉冲沉积(PLD)技术在(302)γ-LiAlO2衬底上成功生长了非极性的a面(1120) ZnO薄膜. 衬底温度为350℃时,薄膜是混合取向(a向和c向),以c面ZnO为主,且晶粒尺寸分布很宽;提高温度达500℃,薄膜变为单一的(1120)取向,摇摆曲线半高宽0.65°,晶粒尺寸分布趋窄,利用偏振透射谱可以明显看出其面内的各向异性. 衬底温度650℃下制备的样品晶粒继续长大,虽然摇摆曲线半高宽变大,但光致发光谱(PL)带边发射峰半高宽仅为105meV,比在350℃,500℃下制备的样品小1/5. 关键词: 非极性ZnO 2')" href="#">γ-LiAlO2 PLD 透射谱  相似文献   

14.
In pursuit of low-cost and highly efficient thin film solar cells, Cu(In,Ga)(Se,S)2/CdS/i-ZnO/ZnO:Al (CIGSS) solar cells were fabricated using a two-step process. The thickness of i-ZnO layer was varied from 0 to 454 nm. The current density-voltage (J-V) characteristics of the devices were measured, and the device and performance parameters of the solar cells were obtained from the J-V curves to analyze the effect of varying i-ZnO layer thickness. The device parameters were determined using a parameter extraction method that utilized particle swarm optimization. The method is a curve-fitting routine that employed the two-diode model. The J-V curves of the solar cells were fitted with the model and the parameters were determined. Results show that as the thickness of i-ZnO was increased, the average efficiency and the fill factor (FF) of the solar cells increase. Device parameters reveal that although the series resistance increased with thicker i-ZnO layer, the solar cells absorbed more photons resulting in higher short-circuit current density (Jsc) and, consequently, higher photo-generated current density (JL). For solar cells with 303-454 nm-thick i-ZnO layer, the best devices achieved efficiency between 15.24% and 15.73% and the fill factor varied between 0.65 and 0.67.  相似文献   

15.
N-ZnO/Ga2O3/p-GaN heterojunction light-emitting diode (LED) was fabricated by metal-organic chemical vapor deposition. Compared with the n-ZnO/p-GaN structure, the deep level visible emission at 525?nm was completely suppressed while UV emission at ~392?nm was significantly improved in ZnO/Ga2O3/p-GaN structure. The role of Ga2O3 in n-ZnO/Ga2O3/p-GaN heterojunction LED was discussed in detail.  相似文献   

16.
Structural, electrical and optical properties of Al doped ZnO (Al:ZnO) thin film of various thicknesses, grown by radio-frequency magnetron sputtering system were studied in relation to the application as a window layer in Cu(In1−xGax)Se2 (CIGS) thin film solar cell. It was found that the electrical and structural properties of Al:ZnO film improved with increasing its thickness, however, the optical properties degraded. The short circuit current density, Jsc of the fabricated CIGS based solar cells was significantly influenced by the variation of the Al:ZnO window layer thickness. Best efficiency was obtained when CIGS solar cell was fabricated with electrically and optically optimized Al:ZnO window layer.  相似文献   

17.
B-N codoped ZnO (ZnO:(B,N)) films were grown on quartz substrate by radio-frequency (rf) magnetron sputtering. The influence of post-annealing ambient on electrical and optical properties of ZnO:(B,N) films were investigated using Hall and Photoluminescence (PL) measurement, respectively. Electrical properties studies indicate that both post-annealing ZnO:(B,N) showed p-type conduction. However, compared with ZnO:(B,N) annealed in oxygen, the ZnO:(B,N) annealed in vacuum have low resistivity and high concentration. The PL spectra indicate that two new emission bands located at 3.303 and 3.208 eV originate from the recombination of A0X and FA related to N acceptor for the annealed p-ZnO:(B,N) in vacuum, but of A0X, FA related to Zn vacancy for the annealed p-ZnO:(B,N) in oxygen. The mechanism of influence of post-annealing on the electrical and optical properties of the ZnO:(B,N) film is discussed in this work.  相似文献   

18.
The (Bi1.6Pb0.4)Sr2Ca2Cu3O10ZnO x (x=0–0.05 wt%) superconductor with addition of ZnO with average particle size 6 nm and 30 nm was prepared using the co-precipitation method. The ZnO particle size was larger than the coherence length, ξ, and smaller than the penetration depth, λ, of the superconductor. The microstructure, transition temperature (T c) and transport critical current density (J c) were studied. SEM micrographs showed a homogeneous distribution of ZnO nanoparticles throughout the samples. J c of all the ZnO added samples were higher than the non-ZnO added sample. The maximal J c and T c were observed when x=0.02 wt% for both series. J c (77 K) of the 6-nm ZnO added sample was 46 times larger than the non-ZnO added sample. The 6-nm ZnO added sample also showed higher J c compared to the 30-nm ZnO added sample. ZnO with size closer to ξ was more effective in enhancing J c.  相似文献   

19.
ZnO films are hydrothermally grown on ZnO-buffered c-plane sapphire substrates at a low temperature of 70 °C. A radio-frequency (RF) reactive magnetron sputtering has been used to grow the ZnO buffer layers. X-ray diffraction, scanning electron microscopy, and room temperature photoluminescence are carried out to characterize the structure, morphology and optical property of the films. It is found that the films are stress-free. The epitaxial relationship between the ZnO film and the c-plane sapphire substrate is found to be ZnO (0 0 0 1)||Al2O3 (0 0 0 1) in the surface normal and in plane. Sapphire treatment, as such acid etching, nitridation, and oxidation are found to influence the nucleation of the film growth, and the buffer layers determine the crystalline quality of the ZnO films. The maximum PL quantum efficiency of ZnO films grown with hydrothermal method is found to be about 80% of single-crystal ZnO.  相似文献   

20.
Neha Singh  Padmini Pandey  Fozia Z. Haque 《Optik》2012,123(15):1340-1342
Sol–gel routes to metal oxide nanoparticles in organic solvents under exclusion of water have become a versatile alternative to aqueous methods. We focus on the preparation of well-aligned ZnO nanorod arrays using non-aqueous sol–gel synthesis route, where ZnO nanorods arrays have been grown on glass substrates. This work provides a systematic study of controlled morphology and crystallinity of ZnO nanorod arrays. The investigation demonstrates that the synthesis process conditions of ZnO thin film have strong influences on the morphology and crystallinity of the ZnO nanorod arrays grown thereon, where non-aqueous process offers the possibility of better understanding and controlling the reaction pathways on the molecular level, enabling the synthesis of nanomaterials with high crystallinity and well-defined, uniform particle morphologies. Here the annealing temperature plays an important role on the growth of nanostructures of the ZnO grains and nanorod arrays. The scanning electron microscopy (SEM) image shows that the growth of ZnO nanorod arrays are high-quality single crystals growing along the c-axis perpendicular to the substrates. A detailed analysis of the growth characteristics of ZnO nanostructures as functions of growth time is also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号