首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
We report (FePt)Ag-C granular thin films for potential applications to ultrahigh density perpendicular recording media, that were processed by co-sputtering FePt, Ag, and C targets on MgO underlayer deposited on thermally oxidized Si substrates. (FePt)1−xAgx-yvol%C (0<x<0.2, 0<y<50) films were fabricated on oxidized silicon substrates with a 10 nm MgO interlayer at 450oC. We found that the Ag additions improved the L10 ordering and the granular structure of the FePt-C films with the perpendicular coercivity ranging from 26 to 37 kOe for the particle size of 5-8 nm. The (FePt)0.9Ag0.1-50vol%C film showed the optimal magnetic properties as well as an appropriate granular morphology for recording media, i.e., average grain size of Dav=6.1 nm with the standard deviation of 1.8 nm.  相似文献   

2.
An in-plane magnetic anisotropy of FePt film is obtained in the MgO 5 nm/FePt t nm/MgO 5 nm films (where t=5, 10 and 20 nm). Both the in-plane coercivity (Hc∥) and the perpendicular magnetic anisotropy of FePt films are increased when introducing an Ag-capped layer instead of MgO-capped layer. An in-plane coercivity is 3154 Oe for the MgO 5 nm/FePt 10 nm/MgO 5 nm film, and it can be increased to 4846 Oe as a 5 nm Ag-capped layer instead of MgO-capped layer. The transmission electron microscopy (TEM)-energy disperse spectrum (EDS) analysis shows that the Ag mainly distributed at the grain boundary of FePt, that leads the increase of the grain boundary energy, which will enhance coercivity and perpendicular magnetic anisotropy of FePt film.  相似文献   

3.
The effect of annealing in an external magnetic field applied perpendicular to the plane of the film on the kinetics of Ll 0 phase transformation of the microstructure and the magnetic properties of the Fe(2 nm)/FePt(20 nm)/Pt(2 nm) multilayer system has been investigated. The relations between the hysteresis loop shape, magnetic correlation length, and structural disorders, which are characteristic of magnetic information carriers, have been analyzed. It has been found that the annealing of the Fe(2 nm)/FePt(20 nm)/Pt(2 nm) multilayer system at a temperature of 470°C in an external magnetic field of 3500 Oe, which is applied perpendicular to the film plane, leads to the formation of a face-centered tetragonal structure of the Ll 0 phase in the FePt film, which is characterized by the high coercivity H c , the (001) preferred texture, the magnetic anisotropy perpendicular to the film plane, small sizes of FePt grains in the film, and weak exchange coupling between the particles. The energy of the external magnetic field encourages the process of transformation of the FePt film into the Ll 0 phase. Thus, a method has been developed for fabricating multilayer films based on the FePt Ll 0 phase with the parameters necessary for information carrier materials with perpendicular-type magnetic recording.  相似文献   

4.
FePt (20 nm) films were annealed in a magnetic field (along the normal direction of the films) at a temperature around the Curie temperature of L10 FePt. The influence of magnetic filed annealing on texture and magnetic properties of FePt films were investigated. The results indicate that preferential (0 0 1) orientation and perpendicular anisotropy can be obtained in L10 FePt films by using magnetic field annealing around the Curie temperature of L10 FePt. This is one of the potential methods to obtain (0 0 1) orientation and thus to improve the perpendicular anisotropy in FePt films.  相似文献   

5.
Magnetic Force Microscopy (MFM) tip coated with perpendicular magnetic anisotropy film (PMA tip) is one of the choices for high resolution imaging at low scan height (SH), since it has negligible tip–sample interaction related to its stable magnetic state, sharp, and small tip stray field. In this work, detailed micromagnetic studies are carried out to understand the effect of geometrical and magnetic parameters including the cone angle θ of the PMA tip, intergrain exchange constant $A_{2}^{*}$ , saturation magnetization M s and uniaxial crystalline anisotropy constant K 1 of the tip coating on the MFM tip resolution. To evaluate the resolution performance of the optimized PMA tip, MFM images of high-density granular recording media and patterned media are simulated. We find that, for the PMA tip and its coating, a cone angle in a range of 36.9° to 53.1°, a saturation M s of 700 emu/cm3, a large uniaxial crystalline anisotropy constant K 1 (>4.9×106 erg/cm3) and a high intergrain exchange constant $A_{2}^{*}$ of (0.3–1.0)×10?6 erg/cm are optimized conditions for high resolution imaging. The optimized PMA tip has an excellent performance on imaging of high-density thin film media (bit size of 8×16 nm2) at low SH of 2–8 nm and bit pattern media with a pitch of 50 nm, edge-edge spacing of 5–15 nm at SH of 8–15 nm.  相似文献   

6.
The Au/FePt samples were prepared by depositing a gold cap layer at room temperature onto a fully ordered FePt layer, followed by an annealing at 800 °C for the purpose of interlayer diffusion. After the deposition of the gold layer and the high-temperature annealing, the gold atoms do not dissolve into the FePt Ll0 lattice. Compared with the continuous FePt film, the TEM photos of the bilayer Au(60 nm)/FePt(60 nm) show a granular structure with FePt particles embedded in Au matrix. The coercivity of Au(60 nm)/FePt(60 nm) sample is 23.5 kOe, which is 85% larger than that of the FePt film without Au top layer. The enhancement in coercivity can be attributed to the formation of isolated structure of FePt ordered phase.  相似文献   

7.
用磁控溅射在热单晶MgO(100)基片上制备了[FePt/BN]多层膜,经真空热处理后,得到具有垂直取向L10-FePt/BN颗粒膜.X射线衍射结果和磁性测量的结果表明,[FePt(2nm)/BN(0.5nm)]10和[FePt(1nm)/BN(0.25nm)]20多层膜经700℃热处理1h后,均具有较好的(001)取向.[FePt(1nm)/BN(0.25nm)]20垂直矫顽力达到522kA/m,剩磁比达到0.99,开关场分布S达到0.94,FePt晶粒平均尺寸约15—20nm,适合用于将来超高密度的垂直磁记录介质. 关键词: 磁控溅射 垂直磁记录 0-FePt/BN纳米颗粒膜')" href="#">L10-FePt/BN纳米颗粒膜  相似文献   

8.
We propose a reactive ion etching (RIE) process of an L10-FePt film which is expected as one of the promising materials for the perpendicular magnetic recording media. The etching was carried out using an inductively coupled plasma (ICP) RIE system and an etching gas combination of CH4/O2/NH3 was employed. The L10-FePt films were deposited on (1 0 0)-oriented MgO substrates using a magnetron sputtering system. The etching masks of Ti were patterned on the FePt films lithographically. The etch rates of ∼16 and ∼0 nm/min were obtained for the FePt film and the Ti mask, respectively. The atomic force microscopy (AFM) analyses provided the average roughness (Ra) value of 0.95 nm for the etched FePt surface, that is, a very flat etched surface was obtained. Those results show that the highly selective RIE process of L10-FePt was successfully realized in the present study.  相似文献   

9.
FePt–SiNx–C films with high coercivity, (001) texture and small grain size were obtained by co-sputtering FePt, Si3N4 and C on TiN/CrRu/glass substrate at 380 °C. Without C doping, FePt–SiNx films with good perpendicular anisotropy and a single layer structure were obtained. However, the grain size was still too large and the grain isolation was poor. When C was doped into the FePt–SiNx films, the out-of-plane coercivity increased due to the decrease of the exchange coupling. In addition, the grain size of the FePt films decreased, and well-separated FePt grains with uniform size were formed. The microstructure of [FePt–SiNx 40 vol%]−20 vol% C films changed from a single layer structure to a multiple layer structure when the FePt thickness was increased from 4 to 10 nm. By optimizing the sputtering process, the [FePt (4 nm)–SiNx 40 vol%]−20 vol% C (001) film with coercivity higher than 21.5 kOe, a single layer structure, and small average FePt grain size of 5.6 nm was obtained, which makes it suitable for ultrahigh density perpendicular recording.  相似文献   

10.
A multilayer structure has been proposed that demonstrates improved (0 0 1) texture for FePt-based L10 perpendicular media. Achieving a strong perpendicular magnetic anisotropy requires aligning the L10 crystallographic c-axis along the film normal. The ordered L10 FePt structure is tetragonal with a c/a ratio close to 0.965. This makes discriminating between the three crystallographic variants ([1 0 0], [0 1 0], and the desired [0 0 1]) difficult. Alloying FePt with Cu to reduce the c/a ratio and using a multilayer approach to keep the magnetic layers thin results in a structure with an adjustable Mrt and a strong (0 0 1) texture (rocking curve widths around 2°). This is a remarkable improvement in texture from pure FePt multilayered films or monolithic FePt(X) films. The proposed [MgO(2 nm)/Fe50−xPt50Cux(5 nm)]×n structure limits grain size in the vertical (perpendicular) direction albeit not in the plane of the film. Carbon can be added to the FePtCu layer to reduce the grain size with minimal degradation of the (0 0 1) orientation.  相似文献   

11.
A three-dimensional micromagnetic model with non-uniform grain size distribution has been built up to study the magnetization process in FePt L10 perpendicular media. A 3D model of a single FePt magnetic grain is also set up for comparison. The high magneto-crystalline anisotropy Ku results in a short exchange length lex in FePt nanograins. Therefore a magnetic grain is divided into smaller grids on the order of lex. The simulated perpendicular and longitudinal loops are consistent with experiments, and it is explained why the measured perpendicular Hc is relatively smaller compared with the saturation field of the longitudinal loop in the FePt perpendicular medium.  相似文献   

12.
李宝河  黄阀  杨涛  冯春  翟中海  朱逢吾 《物理学报》2005,54(8):3867-3871
用磁控溅射法在单晶MgO(100)基片上制备了[FePt 2 nm/Ag dnm]10多层膜, 经真空热处理后,得到具有高矫顽力的垂直取向L10-FePt/Ag颗粒膜.x射线衍射结 果表明,在250 ℃的热基片上溅射,当Ag层厚度d=3—11 nm时,FePt颗粒具有很好的[001]取向,随着Ag层厚度的增加,FePt颗粒尺寸减小.[FePt 2 nm/Ag 9 nm]10经过6 00 ℃真空热处理15 min后,颗粒大小仅约8 nm,垂直矫顽力达到692 kA/m.这种无磁耦合作用的颗粒膜,适合用作超高密度的垂直磁记录介质. 关键词: 磁控溅射 垂直磁记录 纳米颗粒膜 0-FePt/Ag')" href="#">L10-FePt/Ag  相似文献   

13.
A method based on strain-induced phase transformation was used to lower the ordering temperature of FePt films. The strain resulted from the lattice mismatch between the FePt film and the substrate or underlayer favored the ordering. The relationships between the lattice mismatch, the ordering of FePt film, and the corresponding magnetic anisotropic constant were investigated. A critical lattice mismatch near 6.33% was believed to be most suitable for improving the chemical ordering of the FePt films. CrX (X=Ru, Mo, W, Ti) alloys with (2 0 0) texture was used to control the easy axis and ordering temperature of FePt films on glass substrate. Large uniaxial anisotropy constant Ku?1×107 erg/cm3, good magnetic squareness (∼1) and FePt(0 0 1) texture (rocking curve −5°) were obtained at the temperature Ts?250 °C when using CrRu underlayer. The diffusion from overlying layers of Ag and Cu and an inserted Ag pinning layer were effective in reducing the exchange decoupling and changing the magnetization reversal. The media noise was effectively reduced and the SNR was remarkably enhanced when a 2 nm Ag was inserted.  相似文献   

14.
李正华  李翔 《物理学报》2014,63(16):167504-167504
具有四方结构的L10-FePt合金因其具有高磁晶各向异性和良好的化学稳定性而成为超高密度薄膜磁记录介质的最佳选择.对实验制备得到的磁性能良好的垂直取向L10-FePt合金单层膜进行了微磁学分析.在传统微磁学模型的基础上,根据晶体的对称性,引入了四角磁晶各向异性能密度的唯象表达形式;又依据薄膜生长过程中晶格对称性的破坏,考虑了薄膜面内的应力,并引入了磁弹性能.以四角磁晶各向异性能和磁弹性能为重点,对L10-FePt合金单层膜的磁滞回线进行了详细的分析,并且用微磁学方法确定了薄膜面内应力的大小.  相似文献   

15.
The properties of a magnetic force microscopy (MFM) tip are very important for high-resolution magnetic imaging. In this work, micromagnetic models of tips are set up to study the effect of tip-coating microstructure, especially the randomness of anisotropy on tip edge and tip end, on the resolution of MFM. The effective coating height and the resolution potential of tips with various microstructures and magnetic properties have been characterized by investigating the obtained signals from high-density continuous granular thin film disk media with a bit size of 8×16 nm2 and bit-patterned media with a pattern period p of 50 nm. The magnetic moment distribution at the tip end should be perpendicular to the sample to realize a ‘magnetically sharp’ tip, which explains further the improved resolution in the recent experimental reports. Tips with well-controlled grain structure and magnetic anisotropy of coating materials can be applied to both high-density thin film disk media and bit-patterned media.  相似文献   

16.
FePt dot arrays with dot size down to 15 nm are fabricated by film annealing and patterning. The array coercivity shows an increase with dot size decreasing from 100 to 30 nm, and a slight reduction for the 15 nm dot sample. Annealing these dot arrays at higher temperatures results in large enhancements in the coercivities, except the 15 nm dot array where the coercivity increases a little. Micromagnetic models of a 15 nm FePt dot with uniform and nonuniform edges of soft magnetic defects and with inside defects are calculated to reveal the microstructure origins of the dot magnetic properties. It is found that the volume fraction of the L10-phase FePt with perpendicular c-axis orientation is about 50% in the dot and the switching field distribution of the dot array can be influenced significantly by the defect arrangement in the dots.  相似文献   

17.
(Fe50Pt50)100−x-(SiO2)x films (x=0–30 vol%) were grown on a textured Pt(0 0 1)/CrRu(0 0 2) bilayer at 420 °C using glass substrates. FePt(0 0 1) preferred orientation was obtained in the films. Interconnected microstructure with an average grain size of about 30 nm is observed in the binary FePt film. As SiO2 is incorporated, it precipitates as particles are dispersed at FePt grain boundaries. When the content of SiO2 is increased to 13 vol%, columnar FePt with (0 0 1) texture separated by SiO2 is attained. The FePt columns have a length/radius ratio of 2:1. Additionally, the mean grain size is reduced to about 13 nm. The development of this well-isolated columnar structure leads to an enhancement in coercivity by about 44% from 210 to 315 kA/m. As the SiO2 content exceeds 20 vol%, a significant ordering reduction is found accompanied by a transformation of preferred orientation from (0 0 1) to (2 0 0) and the columnar structure disappears, resulting in a drastic degradation in magnetism. The results of our study suggest that isolated columnar, grain refined, (0 0 1)-textured FePt film can be achieved via the fine control of SiO2 content. This may provide useful information for the design of FePt perpendicular recording media.  相似文献   

18.
Ultrathin FePt films (thickness between 1 nm and 5 nm) were studied for non‐volatile memories applications. The films were magnetron sputtered on monocrystalline MgO?001? substrates at 500 °C. The films are polycrystalline, except the 1 nm thick film which is not continuous. It is shown that films with thickness higher than 2.7 nm have L10 structure and perpendicular magnetic anisotropy, while a transition to in‐plane anisotropy occurs for thinner films. The out‐of‐plane coercivity drops from 16 kOe at the thicker film to 0.5 kOe at the thinner one.

Hysteresis cycles of FePt films as a function of film thickness.  相似文献   


19.
An SmCo5 alloy is a promising candidate for ultra-high density magnetic recording media because of its strong uniaxial magnetocrystalline anisotropy, whose constant, Ku, is more than 1.1×108 erg/cm3. Recently, we successfully obtained high perpendicular magnetic anisotropy for a sputter-deposited SmCo5 thin film by introducing a Cu/Ti dual underlayer. However, it is necessary to improve magnetic properties and read/write (R/W) characteristics for applying SmCo5 thin films to perpendicular magnetic recording media. In this study, we focused on reduction of magnetic domain size and change of a magnetization reversal process of SmCo5 perpendicular magnetic thin films by introducing carbon (C) atoms into the constituent Cu underlayer. The magnetic domain size became small and the ratio of coercivity (Hc) against magnetic anisotropy (Hk) which is an index of the magnetization reversal process was increased by adding C atoms. We also evaluated the R/W characteristics of SmCo5 double-layered media including C atoms. The medium noise was decreased and signal-to-noise ratio increased by introducing the C. The addition of C into the Cu underlayer is effective for changing the magnetization reversal process, reducing medium noise and increasing SNR.  相似文献   

20.
Granular L10 FePt (0 0 1) thin films were deposited on a Si substrate with Ta/MgO underlayers by rf sputtering. The effects of in-situ heating temperatures (350-575 °C), pressures (2-40 mTorr), and sputtering powers (15-75 W) on texture and microstructure were investigated for the FePt films. We obtained films with grain densities approaching 50 teragrains per in.2, grains sizes down to 2.2 nm with center-to-center spacing of 4.2 nm and coercivity of 24 kOe. The order parameters for the L10 FePt thin films were derived and calculated to be as high as 0.91. Although the grain size is small, the spacing between grains is too large for practical heat assisted magnetic recording media. To reach the desired results, we propose that layer-by-layer growth should be promoted in the FePt layer by inserting another underlayer that provides a better lattice match to L10 FePt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号