首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We experimentally demonstrate an underwater optical wireless power transfer(OWPT) using a laser diode(LD)as a power transmitter. We investigate the characteristics of a solar cell and a photodiode(PD) as a power receiver. We optimize the LD, the PD, and the solar cell to achieve the maximum transfer efficiency. The maximum transfer efficiency of the back-to-back OWPT is measured as 4.3% with the PD receiver. Subsequently, we demonstrate the OWPT in tap and sea water. Our result shows an attenuation of 3 dB/m in sea water.  相似文献   

2.
We experimentally demonstrated optical wireless power transfer(OWPT) using a near-infrared laser diode(LD)as the optical power transmitter.We considered a photovoltaic(PV) cell and a photodiode(PD) as the optical power receivers.We investigated the characteristics of the LD,PD,and PV cell in order to determine the optimum operating condition from the viewpoint of transfer efficiency.We also experimentally demonstrated a whole system optimization process to maximize the DC-to-DC transfer efficiency of the OWPT.Our experimental results showed that the optimization process can improve the OWPT efficiency by up to 48%.  相似文献   

3.
Tang  Jing  Matsunaga  Kazuhito  Miyamoto  Tomoyuki 《Optical Review》2020,27(2):170-176
Optical Review - Optical wireless power transmission (OWPT), a new WPT alternative, is a promising solution to tackle the challenges like providing over watt-level power over meter-level distance...  相似文献   

4.
熊益军  王岩  王强  王春齐  黄小忠  张芬  周丁 《物理学报》2018,67(8):84202-084202
设计了一种三层宽频吸波超材料,其表层和中间层为单元尺寸不同的周期阵列结构,底层为吸波平板结构,优化后的总厚度仅为4.7 mm,并采用三维(3D)打印技术成功制备了该吸波超材料.吸波体反射率测试结果表明,在电磁波垂直入射条件下,宽频吸收峰分别出现在5.3和14.1 GHz,两峰叠加使得其在4-18 GHz频率范围内反射损耗均小于-10 dB.采用S参数反演法计算了每一层的等效电磁参数,并利用多层结构反射率公式推导得出该模型的理论反射率,理论计算结果与实测结果基本一致.通过研究能量损耗、电场分布和磁场分布揭示了吸波机理,分析表明该吸波体的宽频吸收效果源于三层结构产生的吸收带宽叠加.本文提出的吸波超材料具有良好的宽频吸收效果,尤其在低频范围吸波性能较佳,结合3D打印快速成型技术,可获得结构精细的三层吸波超材料,具有重要的实际应用价值和广阔的应用前景.  相似文献   

5.
在金属板与电介质材料板基底间插入色散特异材料板形成三明治结构,并对其Casimir作用力进行了研究.基于Casimir-Lifshitz理论,通过麦克斯韦应力张量计算了真空涨落的辐射压,并对三明治结构利用电磁模式传输矩阵方法进行了数值计算分析.计算结果表明,原本两板结构中存在的Casimir吸引力,在插入特异材料板后的三明治结构中将转变为斥力,从而使轻薄的金属板产生量子悬浮效应。讨论了特异材料板的色散电磁响应特性以及电介质板基底的影响,结果表明特异材料磁等离子频率越大、磁共振频率越小以及电介质板基底的介电常数越小时,三明治结构中获得的斥力越大.此外,板间距增加到一定范围时,三明治结构中将出现Casimir平衡回复力.特异材料填充因子越小、三明治结构中层距和层厚越大时,三明治结构间的回复力会出现在较长距的位置.三明治结构中的量子悬浮效应与平衡回复力可保证微纳米机械系统稳定性,展现出基于真空辐射压的应用前景.  相似文献   

6.
In this paper the propagation of elegant Hermite-cosh-Gaussian, elegant Laguerre Gaussian, and Bessel Gaussian beams through a Kerr left-handed metamaterial(LHM) slab have been studied. A split-step Fourier method is used to investigate the propagation of laser beams through this media. Numerical simulation shows that Gaussian beams have different focusing behaviors in a Kerr LHM slab with positive or negative nonlinearity. Beam focusing happens in slabs with positive nonlinearity and not in slabs with negative nonlinearity; however, negative nonlinearity is required for a Kerr LHM slab to act like a lens. Additionally, the focusing properties of beams can be controlled by controlling the thickness of the slab or the input power of the incident beam. A multilayer structure is also proposed to have beam focusing by thinner slabs and passing longer distances.  相似文献   

7.
In this paper an optical surface plasmon resonance (SPR) sensor with metamaterial for four and five layered structure is studied. The numerical results presented in this paper leads to a significant properties of metamaterials in sensing field. Computed results of SPR sensors using metamaterial are compared with conventional optical SPR sensors for four and five layered structure. It is seen that wider dynamic range or effective range of measurable refractive index increases when metamaterial layer is used. It is also verified that SPR sensor with metamaterial layer can dramatically enhance the resolution and reduce the reflectivity compared with conventional SPR. Validity of the magnetic field results is proved on the basis of smooth match of the fields in the different layers of the proposed optical SPR sensor.  相似文献   

8.
The absorption, reflection, and transmission of electromagnetic waves by a nonuniform plasma slab immersed in an ambient uniform magnetic field of various strengths are studied in this paper. The effects of the plasma parameters and magnetic field strength on the absorbed, reflected, and transmitted power are discussed. The magnetized nonuniform plasma slab is modeled by a series of magnetized uniform plasma subslabs. The calculation results show that the effects of the magnetic field strength and density gradient on the absorbed power, as well as the frequency band of resonant absorption, are significant. A complete analysis utilizing the scattering matrix method is also used to compare the above calculation results which neglect multiple reflections between subslab interfaces. Broadband absorption of electromagnetic waves can be achieved by changing the magnetic field strength and plasma density. More than 90% of the electromagnetic wave power can be absorbed in a magnetized nonuniform plasma slab with width of 12 cm and the absorption bandwidth can range from 1 to 20 GHz with different plasma parameters and external magnetic field strengths.  相似文献   

9.
We demonstrated a novel metamaterial with dual-band electromagnetically induced transparency(EIT)via simulation,experiment and numerical analysis,with resonance frequencies of the trans-parency peaks of 7.60 and 10.27 GHz.The E-εmetamaterial unit cells were composed of E-shaped and e-shaped patterns.By analyzing the surface current distribution and the magnetic field,we qualitatively verified the toroidal dipole response in the E-εmetamaterial at 10.27 GHz.Meanwhile,by calculating the multipole's radiated power,we found that the two transparency peaks were due to the excitation of the electric and toroidal dipole responses.By changing the incident angle from 0°to 60°,we observed changes in transmission spectra,and the quality factors(Q-factors)of the two transparency peaks increased.In addition,the proposed E-εmetamaterial can be designed to act as a refractive index sensor or other electronic equipment for the control of electromagnetic waves.  相似文献   

10.
The study of acoustic metamaterials, also known as locally resonant sonic materials, has recently focused on the topic of underwater sound absorption. The high absorption occurs only within a narrow frequency band around the locally resonant frequency. Nevertheless, this problem can be addressed through a combination of several acoustic metamaterial layers that have different resonant frequencies. In this paper, an optimization scheme, a genetic and a general nonlinear constrained algorithm, is utilized to enhance the low-frequency underwater sound absorption of an acoustic metamaterial slab with several layers. Both the physical and structural parameters of the acoustic metamaterial slab are optimized to enlarge the absorption band. In addition, the sound absorption mechanism of the acoustic metamaterial slab is also analyzed. The result shows that each layer is found to oscillate as a nearly independent unit at its corresponding resonant frequency. The theoretical and experimental results both demonstrate that the optimized metamaterial slab can achieve a broadband (800–2500 Hz) absorption of underwater sound, which is a helpful guidance on the design of anechoic coatings.  相似文献   

11.
An analytical theory is developed for parametric interactions in metamaterial multilayer structures with simultaneous nonlinear electronic and magnetic responses and with a near-zero refractive index. We demonstrate theoretically that electromagnetic fields of certain frequencies can be parametrically shielded by a nonlinear left-handed material slab, where the permittivity and permeability are both negative. The skin depth is tunable, and even in the absence of material absorption, can be much less than the wavelength of the electromagnetic field being shielded. This exotic behavior is a consequence of the intricate nonlinear response in the left-handed materials and vanishing optical refractive index at the pump frequency.  相似文献   

12.
Full-duplex (FD) transmission holds a great potential of improving the sum data rate of wireless communication systems. However, the self-interference introduced by the full-duplex transmitter brings a big challenge to enhance the energy efficiency. This paper investigates the power allocation problem in a full-duplex two-way (FDTW) communication network over an OFDM channel, aiming at improving the sum data rate and energy efficiency. We first characterize the sum rate and energy efficiency achieved in a single-carrier FDTW system. The optimal transmit power that achieves the maximal sum data rate is presented. The energy efficiency maximization problem is solved by using fractional programming. Then we further formulate sum rate and energy efficiency maximization problem in a multi-subcarrier FDTW system. In particular, the sub-optimal transmit power allocation which achieves a decent sum rate improvement is found by using a proposed iterative algorithm. By combining the iterative algorithm and fractional programming, we further maximize the energy efficiency of the multi-subcarrier system. With our proposed algorithm, we can easily obtain an optimal transmit power that approximates the global optimal solution. Simulation results show that using the obtained optimal transmit power allocation algorithm can significantly improve the sum rate and energy efficiency in both single-carrier and multi-subcarrier systems.  相似文献   

13.
郭伟杰  陈再高  蔡利兵  王光强  程国新 《物理学报》2015,64(7):70702-070702
本文研究了一种太赫兹波段双环超材料慢波结构, 并具有同轴引出结构的相对论过模表面波振荡器. 设计了超材料同轴过模慢波结构; 通过色散特性, 进行了模式选择和过模结构电子束电参数和几何参数的设计; 根据超材料同轴慢波结构的特点, 设计了具有同轴引出结构的末端同轴输出段. 粒子模拟结果表明, 在电子束电压为600 kV和电流为1.0 kA, 引导磁场为2.0 T 时, 同轴超材料慢波结构过模表面波振荡器输出稳定单频的0.141 THz电磁波, 峰值功率为316.8 MW.  相似文献   

14.
运用矢量角谱理论研究各向异性超常材料平板透镜的聚焦特性,得到了光束在平板透镜内外各区域的矢量场分布,揭示了超常材料平板透镜的聚焦特性跟材料的各向异性参数之间的定量关系,发现聚焦场的偏振态因平板透镜的各向异性特性而发生改变.作为矢量理论的具体应用,分析了光轴方向磁导率为-1,其他各向异性参数均为1的超常材料平板透镜的聚焦特性,发现此类透镜对初始沿某一横向方向偏振的光束能实现部分聚焦,并发生偏振旋转现象.  相似文献   

15.
Wenbo Cao 《中国物理 B》2022,31(11):117801-117801
A pure dielectric metamaterial absorber with broadband and thin thickness is proposed, whose structure is designed as a periodic cross-hole array. The pure dielectric metamaterial absorber with high permittivity is prepared by ceramic reinforced polymer composites. Compared with those with low permittivity, the absorber with high permittivity is more sensitive to structural parameters, which means that it is easier to optimize the equivalent electromagnetic parameters and achieve wide impedance matching by altering the size or shape of the unit cell. The optimized metamaterial absorber exhibits reflection loss below -10 dB in 7.93 GHz-35.76 GHz with a thickness of 3.5 mm, which shows favorable absorption properties under the oblique incidence of TE polarization (±45°). Whether it is a measured or simulated value, the strongest absorbing peak reaches below -45 dB, which exceeds that of most metamaterial absorbers. The distributions of power loss density and electric and magnetic fields are investigated to study the origin of their strong absorbing properties. Multiple resonance mechanisms are proposed to explain the phenomenon, including polarization relaxation of the dielectric and edge effects of the cross-hole array. This work overcomes the shortcomings of the narrow absorbing bandwidth of dielectrics. It demonstrates that the pure dielectric metamaterial absorber with high permittivity has great potential in the field of microwave absorption.  相似文献   

16.
Transmission of light through a left-handed slab is studied theoretically. The slab consists of randomly distributed electric and magnetic scatterers. In a practical realization these could be wire and split ring resonators forming a disordered metamaterial. Enhanced transmission close to the middle of the slab is demonstrated. It is explained canalization of source image through self-collimated channels. Existence of self-collimated channels localized on the surface of the slab is demonstrated and a possibility of sub-wavelength imaging by such a system is discussed.  相似文献   

17.
贺训军  王玥  梅金硕  桂太龙  殷景华 《中国物理 B》2012,21(4):44101-044101
We propose a bulk negative refractive index (NRI) metamaterial composed of periodic array of tightly coupled metallic cross-pairs printed on the six sides of a cube for applications of superlenses. The structural characteristics of the three-dimensional (3D) metamaterial consist in the high symmetry and the superposition of metallic cross-pairs, which can increase the magnetic inductive coupling between adjacent cross-pairs and realize a broadband and isotropic NRI. The proposed 3D structure is simulated using the CST Microwave Studio 2006 to verify the design validity. The simulation results show that the proposed structure can not only realize simultaneously an electric and magnetic response to an incident electromagnetic (EM) wave, but also exhibit a broadband NRI whose relative bandwidth can reach up to 56.7%. In addition, the NRI band is insensitive to the polarization and the incident angle of the incident EM wave. Therefore, the proposed metamaterial is a good candidate material as three-dimensional broadband isotropic NRI metamaterial.  相似文献   

18.
In this paper, an ultra-broadband metamaterial absorber is successfully designed in the visible region. The structure of the absorber is just obtained by the two-dimensional plane structure which rotate 90° along x-axis. Furthermore, the formation of the structure for the hybrid materials is based on the four U-shaped structure of the metal titanium is embedded in the semiconductor (indium antimonide). The simulated results show that the proposed metamaterial absorber can achieve an ultra-broadband absorption with greater than 90% from 252.2 to 822.3 THz, and the relative absorption bandwidth gets to 106.1%. Finally, the simulated electric field, surface current and power loss density distributions further illustrate the absorption mechanism of the metamaterial absorber. And we believe the metamaterial absorber will have many potential applications in energy harvesting and stealth devices.  相似文献   

19.
We show that waveguides with a dielectric core and a lossy metamaterial cladding (metamaterial-dielectric guides) can support hybrid ordinary-surface modes previously only known for metal-dielectric waveguides. These hybrid modes are potentially useful for frequency filtering applications as sharp changes in field attenuation occur at tailorable frequencies. Our results also show that the surface modes of a metamaterial-dielectric waveguide with comparable electric and magnetic losses can be less lossy than the surface modes of an analogous metal-dielectric waveguide with electric losses alone. Through a characterization of both slab and cylindrical metamaterial-dielectric guides, we find that the surface modes of the cylindrical guides show promise as candidates for all-optical control of low-intensity pulses.  相似文献   

20.
We numerically investigate the electromagnetic properties of tellurium dielectric resonator metamaterial at the infrared wavelengths. The transmission spectra, effective permittivity and permeability of the periodic tellurium metamaterial structure are investigated in detail. The linewidth of the structure in the direction of magnetic field W x has effects on the position and strength of the electric resonance and magnetic resonance modes. With appropriately optimizing the geometric dimensions of the designed structure, the proposed tellurium metamaterial structure can provide electric resonance mode and high order magnetic resonance mode in the same frequency band. This would be helpful to analyze and design low-loss negative refraction index metamaterials at the infrared wavelengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号