首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zinc oxide based film bulk acoustic resonator as mass sensor was fabricated by multi-target magnetron sputtering under optimized deposition condition. Each layer of the device was well crystallized and highly textural observed by transmission electron microscopy and X-ray diffraction measurement. Through piezoelectric test, the device vibrated with significant distance. The influence of top electrode on resonant frequency and the bio-specimen of mass loading effect were investigated. Data show that the device has qualified properties as mass biosensor, with a resonant frequency of 3-4 GHz and a high sensitivity of 8-10 kHz cm2/ng.  相似文献   

2.
ZnO film is attractive for high frequency surface acoustic wave device application when it is coupled with diamond. In order to get good performance and reduce insertion loss of the device, it demands the ZnO film possessing high electrical resistivity and piezoelectric coefficient d33. Doping ZnO film with some elements may be a desirable method. In this paper, the ZnO films undoped and doped with Cu, Ni, Co and Fe, respectively (doping concentration is 2.0 at.%) are prepared by magnetron sputtering. The effect of different dopants on the microstructure, piezoelectric coefficient d33, and electrical resistivity of the film are investigated. The results indicate that Cu dopant can enhance the c-axis orientation and piezoelectric coefficient d33, the Cu and Ni dopant can increase electrical resistivity of the ZnO film up to 109 Ω cm. It is promising to fabricate the ZnO films doped with Cu for SAW device applications.  相似文献   

3.
In this paper, we fabricate a pure-shear mode film bulk acoustic resonator based on c-axis oriented ZnO film. The resonator is consisted of an in-plane electrode, a highly c-axis oriented ZnO film and a SiO2/W Bragg reflector. The shear mode wave is excited by the lateral electric field. The resonator works in a pure-shear mode with the resonance frequency near 1.5 GHz and the Q-factor of 479 in air. There is no obvious longitudinal mode resonance in the frequency response, which can be explained that the electric field component normal to the surface is very weak and the Bragg reflector has the effective frequency selectivity for the shear mode. Importantly for sensors, the immersion into de-ionized water and glycerol liquid still allows for a Q-factor up to 335 and 220, respectively. This resonator shows the potential as mass loading sensors for biochemical application.  相似文献   

4.
A high-frequency (~60 MHz) ultrasonic transducer with a [001]-oriented 0.27Pb(In1/2Nb1/2)O3–0.45Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 (PIN–PMN–PT) piezoelectric single crystal as an active element has been fabricated and characterized. The poled PIN–PMN–PT single crystal has thickness mode electromechanical coefficient k t of 0.56 and piezoelectric constant d 33 of 1550 pC/N. The ?6 dB bandwidth of the transducer is 73 % and the insertion loss at its centre frequency is ?20 dB. With the study as a function of temperature, the PIN–PMN–PT transducer shows better thermal stability than the binary single crystal transducer. Furthermore, the transducer was evaluated using a 30-μm aluminum wire phantom image, in which the ?6 dB axial and lateral resolutions are found to be 26 μm and 127 μm, respectively. Ultrasonic images of fish eyes were obtained with the 60-MHz transducer. It is shown that the high-sensitivity transducer can produce the images with high signal-to-noise ratio and good contrast.  相似文献   

5.
Interaction between a weakly divergent optical beam and an acoustic wave generated in the range 1.0–2.5 GHz by an inphase multielement electroacoustic piezoelectric transducer is analyzed. A piezoelectric (Y + 36°)-cut LiNbO3 plate is fixed on the surface of an X-cut LiNbO3 acoustic duct with the help of metallic sublayers (Cr, Cu, In, Cu, or Cr). The inphase structure of the transducer is formed by the upper electrodes inter-connected by short conductors. The signal is applied through a coaxial Chebyshev transformer. The efficiencies of electroacoustic conversion and acoustooptic interaction are calculated as functions of frequency. The experimental setup, method, and results are described.  相似文献   

6.
S. B. R. S. Adnan  N. S. Mohamed 《Ionics》2014,20(11):1641-1650
Novel Li4.08Zn0.04Si0.96O4 electrolyte was synthesized by citric acid-assisted sol–gel method. The compound was studied by X-ray diffraction and complex impedance spectroscopy in the frequency range from 10 Hz to 10 MHz and temperature range from 573 to 773 K. The conductivity–frequency spectra exhibited two regions of conductivity dispersion related to Li+ ion transport in the bulk and grain boundaries. The activation energy of the bulk conductivity was found to be equal to the activation energy of relaxation frequency in the bulk. This indicated that the increase in conductivity with temperature was due to the increase in ion mobility while the number of charge carrier concentration was found to be constant with selected temperature range. The observation was in agreement with the calculated charge carrier concentration and ion mobility derived from conductance spectra, σ ac(ω)?=?σ o ?+? α .  相似文献   

7.
A novel concept based on the use of solutions containing already qualified crystalline antimony-doped tin oxide SnO2:Sb (ATO) nanoparticles has been developed. ATO nanoparticles are decorated by reduced graphene oxide (rGO) through a hydrothermal synthesis method. The electrical and optical properties of the graphene oxide films are investigated systematically. The sheet resistance (R ) of the ATO–rGO films decreases with the increase in the rGO content in the precursor solution. The R can be decreased after the ATO–rGO films annealing in the air for 1 h and can be further decreased by depositing Au on the surface of the films. The optimum property of the ATO–rGO film shows that the R is 80 Ω/□ and the transmittance is about 70 %. The ATO–rGO films are used as the anode of the organic solar cells. The anode film impact on the performance of the devices is studied. Finally, the power conversion efficiency (PCE) of the device based on the poly-(3-hexylthiophene): [6, 6]-phenyl C61-butyric acid methyl ester (PCBM) blended is 1.85 %, and the PCE of the device based on the poly-benzo[1,2-b:4,5-b′] dithio-phene thieno[3,4-b] thiophene:PCBM blended is 3.4 %.  相似文献   

8.
La0.67Ca0.33MnO3 particle films with an average particle size of ~150 nm were grown on single-crystal silicon substrate using pulsed electron deposition technique and then focused ion beam was introduced to fabricate nanobridge in size of 300 × 900 nm on the particle film. The magneto-transport properties of both samples were studied. For the film, there is only one resistance peak at 182 K in temperature-dependent resistance (RT) curves, which is far lower than ferromagnetic–paramagnetic transition temperature (T C) of 250 K. When compared to the film, double peaks were observed in both RT curves and magnetoresistance dependent on temperature (MR–T) curves of the nanobridge, one peak is at 186 K, which is very close to metal–insulator transition temperature (T P) of film, the other one is at 250 K, which is close to the T C of film, and these two peaks caused separately by grain and grain boundary (GB), which demonstrated that the electrical transport behavior of grain was separated from that of GB.  相似文献   

9.
Multiferroic and resistive switching properties of single-phase polycrystalline perovskite BiFe0.95Cr0.05O3 (BFCO) thin films grown on Pt/Ti/SiO2/Si substrates by radio-frequency magnetron sputtering were investigated. The BFCO film shows ferroelectric and magnetic properties simultaneously at room temperature, and also exhibits a good piezoelectric property with remanent effective piezoelectric coefficient d 33,f ~55±4 pm/V. An obviously resistive switching behavior was observed in the BFCO thin film at room temperature, which was discussed by the filamentary conduction mechanism associated with the redistribution of oxygen vacancies.  相似文献   

10.
A BaTi4O9 film was prepared on a Pt/Ti/SiO2/Si substrate by a laser chemical vapor deposition method and was investigated by impedance spectroscopy over ranges of temperature (300–1073 K) and frequency (102–107 Hz). Plots between real and imaginary parts of the impedance (Z′ and Z′′) suggest the presence of two relaxation regimes, which were attributed to grain and grain boundary responses. The conduction of both grains and grain boundaries obeys the Arrhenius format with activation energies of respectively 1.45 and 1.24 eV. The close activation energies indicate that the conduction in BaTi4O9 film is mainly by oxygen vacancies.  相似文献   

11.
LiNbO 3 has been found attractive for lateral field excitation (LFE) applications due to its high piezoelectric coupling. In this paper, bulk acoustic wave propagation properties for LiNbO 3 single crystal excited by a lateral electric field have been investigated using the extended Christoffel-Bechmann method. It is found that the LFE piezoelectric coupling factor for c mode reaches its maximum value of 95.46% when ψ = 0 for both (yxl)-58 and (yxwl)±60 /58 LiNbO 3 . The acoustic wave phase velocity of c mode TSM (thickness shear mode) changes from 3456 m/s to 3983 m/s as a function of ψ. Here ψ represents the angle between the lateral electric field and the crystallographic X-axis in the substrate major surface. A 5 MHz LFE device of (yxl)-58 LiNbO 3 with ψ = 0 was designed and tested in air. A major resonance peak was observed with the motional resistance as low as 17 and the Q-factor value up to 10353. The test result is well in agreement with the theoretical analysis, and suggests that the LFE LiNbO 3 device can be a good platform for high performance resonator or sensor applications.  相似文献   

12.
A comparison of structure and dielectric properties of TlSbS2 thin films, deposited in different thicknesses (400–4100 Å) by thermal evaporation of TlSbS2 crystals that were grown by the Stockbarger–Bridgman technique and the bulk material properties of TlSbS2 are presented. Dielectric constant ε 1 and dielectric loss ε 2 have been calculated by measuring capacitance and dielectric loss factor in the frequency range 20 Hz–10 KHz and in the temperature range 273–433 K. It is observed that at 1 kHz frequency and 293 K temperature the dielectric constant of TlSbS2 thin films is ε 1=1.8–6 and the dielectric loss of TlSbS2 thin films is ε 2=0.5–3 depending on film thickness. In the given intervals, both of dielectric constant and dielectric loss decrease with frequency, but increase with temperature. The maximum barrier height W m is calculated from the dielectric measurements. The values of W m for TlSbS2 films and bulk are obtained as 0.56 eV and 0.62 eV at room temperature, respectively. The obtained values agree with those proposed by the theory of hopping over the potential barrier. The temperature variation of ac conductivity can be reasonably interpreted in terms of the correlated barrier hopping model since it obeys the ω s law with a temperature dependent s (s<1) and going down as the temperature is increased. The temperature coefficient of capacitance (TCC) and permittivity (TCP) are evaluated for both thin films and bulk material of TlSbS2.  相似文献   

13.
The synthesis of nickel chloride (NiCl2)-mixed with polyvinyl alcohol films of 15–20 μm in thickness has been carried by solution blending technique. The dielectric properties of the films have been measured in the frequency range of 20 Hz to 1 MHz under a positive bias potential in the range from 0 to 40 V. Improved electric characterization was demonstrated due to ionic incorporation of NiCl2. The low-frequency polarization was based on the Maxwell–Wagner interfacial model. Hence, this composite film may suggest as suitable electronic polar medium for versatile low-frequency applications.  相似文献   

14.
This paper focuses on the fabrication of film bulk acoustic-wave resonator (FBAR) comprising an aluminum nitride (AlN) piezoelectric thin film sandwiched between two metal electrodes and located on a silicon substrate with a low-stress silicon nitride (Si3N4) support membrane for high frequency wireless applications, and analyzes the optimization of the thin AlN film deposition parameters on Mo electrodes using the reactive RF magnetron sputter system. Several critical parameters of the sputtering process such as RF power and Ar/N2 flow rate ratio were studied to clarify their effects on different electrodes characteristics of the AlN films. The experiment indicated that the process for Mo electrode was easier compared with that of the Pt/Ti or Au/Cr bi-layer electrode as it entailed only one photo resist and metal deposition step. Besides, Pt/Ti or Au/Cr electrodes reduced the resonance frequency due to their high mass density and low bulk acoustic velocity. Compared with the case of the Al bottom electrode, there is no evident amorphous layer between the Mo bottom electrode and the deposited AlN film. The characteristics of the FBAR devices depend not only upon the thickness and quality of the AlN film, but also upon the thickness of the top electrode and the materials used. The results indicate that decreasing the thickness of either the AlN film or the top electrode increases the resonance frequency. This suggests the potential of tuning the performance of the FBAR device by carefully controlling AlN film thickness. Besides, increasing either the thickness of the AlN film or higher RF power has improved a stronger c-axis orientation and tended to promote a narrower rocking curve full-width at half-maximum (FWHM), but increased both the grain size and the surface roughness. An FBAR device fabricated under optimal AlN deposition parameters has demonstrated the effective electromechanical coupling coefficient (k eff2) and the quality factor (Q f x ) are about 1.5% and 332, respectively.  相似文献   

15.
Tungsten oxide (WO3) films were prepared on indium–tin oxide (ITO) glass by sol–gel method. The influence of annealing temperature on the structural, morphological, optical, electrochemical, and electrochromic properties has been investigated. The film annealed at 250 °C with an amorphous structure exhibits a noticeable electrochromic performance, such as the highest optical modulation of 58.5 % at 550 nm, high electrochemical stability, and excellent reversibility (Q b/Q c?=?96.3 %). An electrochromic (EC) device based on WO3/NiO complementary structure shows improved performance. It exhibits high optical transmittance modulation of 62 % at 550 nm, excellent cycling stability, and relatively fast electrochromic response time (10 s for coloration and 19 s for bleaching).  相似文献   

16.
The appearance of microlenses in the amorphous crystal Ge33As12Se33 modulated by the acoustic waves with intensity of 107 W/m2 and frequency of (200–400) MHz is presented. The flexibility of microlens, i.e. the dependence of its focal point in 3D space on the parameters of acoustic wave is studied. Basing on flexibility of microlens, a model of acousto-optical tweezers to stretch the λ-phage WLC DNA molecule is proposed. And then the control process of stretched length of DNA molecule in 3D space of the water (fluid) by calibration of the acoustic frequency is numerically observed and discussed. The obtained results show the possibility to use the acousto-optical tweezers to control the stretched length of WLC DNA molecule with high fineness.  相似文献   

17.
This study employs RF magnetron sputter technique to deposit high C-axis preferred orientation ZnO thin film on silicon substrate, which is then used as the piezoelectric thin film for a thin film bulk acoustic resonator (FBAR). Electrical properties of the FBAR component were investigated by sputtering a ZnO thin film on various bottom electrode materials, as well as varying sputter power, sputter pressure, substrate temperature, argon and oxygen flow rate ratio, so that structural parameters of each layer were changed. The experimental results show that when sputter power is 200 W, sputter pressure is 10 mTorr, substrate temperature is 300 °C, and argon to oxygen ratio is 4:6, the ZnO thin film has high C-axis preferred orientation. The FBAR component made in this experiment show that different bottom electrode materials have great impact on components. In the experiment, the Pt bottom electrode resonant frequency was clearly lower than the Mo bottom electrode resonant frequency, because Pt has higher mass density and lower acoustic wave rate. The component resonant frequency will decrease as ZnO thin film thickness increases; when top electrode thickness is higher, its resonant frequency also drops, due to top electrode mass loading effect and increased acoustic wave path. Therefore, ZnO thin film and top/bottom electrode thickness can be fine-tuned according to the required resonant frequency.  相似文献   

18.
The small-signal ac response of single crystalline Ba1?xLaxF2+x solid solutions has been studied in the temperature region 300–820 K, and in the frequency range 4×10?2–5×104 Hz. At low temperatures the frequency dispersion is dominated by processes in the bulk. Apart from the bulk conductance these processes include a dielectric response determined by broad distributions of dipole-like relaxations. The increase of the static dielectric constant with increasing solute content is explained. At higher temperatures the frequency dispersion reflects interfacial phenomena. In addition to an almost ideal interface capacitance, phenomena are observed which indicate the growth of a surface layer due to a reaction between the electrolyte, and residual oxygen and/or water vapour from the ambient.  相似文献   

19.
Besides commercially available synthetic polymers, the present work has been undertaken to explore the significance of poly(glycerol suberate) (PGS) polyester synthesised under lab scale in energy storage device. In this regard, a blend polymer electrolyte comprising of polyvinyl alcohol (PVA), poly(glycerol suberate) (PGS) polyester along with the various proportions of ammonium thiocyanate (NH4SCN) was prepared adopting solution casting technique. The synthesised polyester PGS was characterised by Fourier transform infrared (FT-IR) spectroscopy, 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. The prepared electrolyte film was subjected to FT-IR analysis to study the complexation that has occurred within the blend. Its amorphous nature was revealed from X-ray diffraction (XRD) studies. Influence of NH4SCN on the glass transition temperature (Tg) was drawn from differential scanning calorimetry (DSC) technique. The dispersion of dopant within the polymer matrix was supported by scanning electron microscopy (SEM) followed by its elemental composition from energy dispersive spectroscopy (EDS). From the AC impedance technique, maximum conductivity of 3.01?×?10?4 S cm?1 was elicited for the optimised electrolyte (1 g PVA?+?0.75 g PGS?+?0.6 g NH4SCN). Frequency-dependent dielectric and modulus spectra were analysed to study the mechanism of transportation. Transport parameters evaluated by Wagner’s polarisation method proved that the conductivity was predominantly due to cations. Proton conducting battery was configured with the highest conducting electrolytic film and its cell parameters are presented.  相似文献   

20.
(100) Oriented Pb x Sr1?x TiO3 (PSTO) thin films are prepared on indium tin oxide (ITO)/glass substrates by sol–gel technique while inserting doped PbTiO3 (PTO)-inducing layer in between. The effect of tensile stress in PSTO on tunability and (100) orientation of the thin films was investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscope, and atomic force microscope, respectively. Results show that PSTO thin film deposited on doped PTO has (100) oriented structure while it is randomly oriented when deposited directly on the ITO/glass substrate. Lattice mismatch between PSTO and PTO appears, in which the in-plane lattice constant c is 0.3922–0.3924 nm in the former and 4.02–4.07 nm in the latter, respectively, contributing tensile stress in the PSTO due to different lattice constants between them. The stress in the PSTO thin film is 3.04, 3.15, 3.59 and 4.47 GPa when the doped PTOs are Fe–PTO, Tb–PTO, Co–PTO and Zn–PTO, respectively. The orientation degrees of PSTO thin films are from 89.63, 90.31, 91.92 to 93.29 % with increasing stress of PSTO on Fe–PTO, Tb–PTO, Co–PTO and Zn–PTO, respectively. Tunabilities of the well-oriented PSTO thin films increase in ascending order of 63 < 65 < 69 < 73 % when induced by oriented PTO layers of Fe–PTO, Tb–PTO, Co–PTO and Zn–PTO, respectively, which is in accordance with the degree of (100) orientation appearing in the thin films. The high tunability appears in the PSTO thin film while high (100) orientation is derived from the tensile stress. It is much higher than that of randomly oriented PSTO thin film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号