首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wang  P.  Li  J.  Lang  P. L.  Li  S. L.  Chu  H. F.  Xie  T. Y.  Zheng  D. N. 《Applied Physics A: Materials Science & Processing》2011,102(2):449-455
High quality La2/3Ca1/3MnO4(LCMO) thin films have been deposited on silicon-on-insulator (SOI) substrates only buffered by yt tria-stabilized zirconia (YSZ) by using the pulsed laser deposition (PLD) technique. The results obtained from X-ray diffraction (XRD), reflection high energy electron diffraction (RHEED), scanning electron microscopy (SEM) and magnetization investigations indicate that the LCMO films are highly oriented both in-plane and out-of-plane. The Curie temperature T c is close to 260 K and the insulator–metal (I–M) transition appears around 220 K. The conducting mechanism at low temperatures is dominated by the electron–magnon scattering. A tensile stress from the film–substrate lattice mismatch results in magnetic ‘easy axes’ in the film plane and the magnetic anisotropy energy increases with cooling. A maximum magnetoresistance (MR) is observed near 190 K, with the external magnetic field either parallel or vertical to the LCMO film plane. Moreover, the large intrinsic high-field magnetoresistance (HFMR) and the very small extrinsic low-field magnetoresistance (LFMR) again reveal that the LCMO films on SOI substrates are highly oriented thin films of good crystallinity.  相似文献   

2.
SrZrO3 (SZO) thin films have been prepared on Pt-coated silicon substrates and directly on Si substrates by pulsed laser deposition (PLD) using a ZrSrO target at a substrate temperature of 400 °C in 20 Pa oxygen ambient. X-ray –2 scans showed that the as-deposited films remain amorphous at a substrate temperature of 400 °C. The dielectric constant of SZO has been determined to be in the range 24–27 for the Pt/SZO/Pt structure. Capacitance–voltage (C–V) characteristics of a metal-oxide-semiconductor (MOS) structure for SZO films deposited in 20 Pa oxygen ambient and 20 Pa nitrogen ambient (SZON) indicated that incorporation of nitrogen during the substrate heating and film deposition can suppress the formation of an interfacial SiO2 layer, and the SZON films have a lower equivalent oxide thickness (EOT) than that of the SZO films. However, the leakage current of the SZON films is larger than that of the SZO films. The EOT is about 1.2 nm for a 5-nm SZON film deposited at 400 °C. The leakage-current characteristics of as-deposited SZON films and SZON films post-annealed in oxygen ambient by rapid thermal annealing (RTA) have been studied comparatively. The films post-annealed with RTA have a lower leakage current than the as-deposited SZON films. Optical transmittance measurements showed that the band gap of the films is about 5.7 eV. It is proposed that SrZrO3 films prepared at 400 °C are potential materials for alternative high-k gate-dielectric applications. PACS 77.84.Bw; 77.84.-s; 77.55.+f  相似文献   

3.
La2/3Ca1/3MnO3薄膜的光致电阻率变化特性   总被引:3,自引:0,他引:3       下载免费PDF全文
射频磁控溅射法制备了La2/3Ca1/3MnO3纳米薄膜(LCMO).该薄膜发生FM-PM相变的转变点温度为Tc≈308K(近似为电阻峰值温度Tp);在不同温度下的光电导性质实验表明所制备的LCMO薄膜在连续激光作用时低温段(TTc时,ΔR/R<0,即光电导效应.调制激光脉冲光响应实验发现,光致信号强度和温度及偏置电流之间存在非线性关系:光致电阻率增大信号极大值为偏置电流的二次函数,而极大值对应的温度和偏置电流成线性关系,同时,光响应有一个截止温度,并且存在最佳光响应偏置电流和温度条件.分析认为LCMO薄膜的光致电阻率变化特性和材料的eg↓自旋电子的状态以及与此相应的小极化子的形成有关.  相似文献   

4.
Influence of annealing temperature on the properties of Sb-doped ZnO thin films were studied. Hall measurement results indicated that the Sb-doped ZnO annealed at 950 °C was p-type conductivity. X-ray diffraction (XRD) results indicated that the Sb-doped ZnO thin films prepared at the experiments are high c-axis oriented. It was worth noting that p-type sample had the worst crystallinity. The measurements of low-temperature photoluminescence (PL) spectra indicate that the sample annealed at the temperatures of 950 °C showed strong acceptor-bound exciton (A0X) emission, and confirmed that it is related to Sb-doping by comparing with the undoped ZnO low-temperature PL spectrum.  相似文献   

5.
La2/3Ca1/3MnO3 thin films have been grown on SrTiO3, LaAlO3, and yttria-stabilized zirconia buffered silicon-on-insulator (SOI) substrates by the pulsed laser deposition technique. While full cube-on-cube epitaxy was achieved on the SrTiO3 and LaAlO3 substrates, a coexistence of the cube-on-cube and cube-on-diagonal epitaxy was observed in the the manganite films on SOI substrates. Besides the intrinsic four-fold magnetocrystalline anisotropy, a uniaxial anisotropy also exists in the films, which is determined by the demagnetization field and the mismatch-induced strain. A tensile strain leads to an easy plane, while a compressive strain favors an easy axis. The different magnetization configurations in the films on different substrates are the reason for their varied transport and magnetic properties. Due to a combined effect of these magnetic anisotropy, the magnetization in the two crystallography domains in the film on SOI tends to lie in the film plane but align in their respective easy axes. There are always large spin angles across the domain boundaries. As a result, a quite large low-field magnetoresistance (LFMR) based on spin-dependent tunnelling was observed. It shows a resistance change of ∼20% at 50 K in a magnetic field ∼700 Oe, which is promising for real applications. PACS 75.47.Lx; 72.25.Mk  相似文献   

6.
ZnPc thin films were prepared by pulsed laser deposition (KrF laser, λ = 248 nm, τ = 5 ns, f = 50 Hz) on suprasil substrates in vacuum. Optical properties in UV–Vis spectral region were analyzed as functions of laser fluence from 40 to 100 mJ/cm2 by spectrophotometric and spectral ellipsometry measurements. The spectral ellipsometry data were treated using a three-layer model (substrate, film, roughness). The best results of data fitting were obtained when Q band was characterized by two Lorentz oscillators, while two Gaussian oscillators were used for B and C band fitting. We derived the band gap using Tauc plot considering ZnPc a direct band gap semiconductor. The band gap values were found decreasing from 3.13 to 3.09 eV with increasing laser fluence, which might be related with formation of trapping sites at higher fluence.  相似文献   

7.
La0.8MnO3 thin films have been deposited on (100) SrTiO3 substrates at different substrate temperatures by a pulsed laser deposition method. Electronic transport measurements show that a higher substrate temperature results in lower resistivity and higher insulator–metal transition temperature. Transmission electron microscope studies reveal that all the films exhibit a feature of columnar structure with the grain size decreasing with substrate temperature. We argue that the columnar grain size strongly affects the ferromagnetic transition temperature and, in turn, dominates the resistivity behavior. Based on this point, other effects, such as of annealing and film thickness, on the electronic properties are also discussed. PACS 68.55.Jk; 71.30.+h; 75.70.Ak; 75.70.Pa  相似文献   

8.
Bi2Zn2/3Nb4/3O7 thin films were deposited on Pt/TiO2/SiO2/Si(100) substrates under an oxygen pressure of 10 Pa by pulsed laser deposition. The substrate temperature varied from 500 °C to 750 °C. Effects of substrate temperature on the crystallinity, microstructure, and electric properties of Bi2Zn2/3Nb4/3O7 thin films have been systematically investigated. Bi2Zn2/3Nb4/3O7 thin films are amorphous in nature at a substrate temperature of 500 °C. With increase of substrate temperature to 550 °C, thin films begin to crystallize. At higher temperature of 750 °C, Bi2O3 phase can be detected in thin films. However, the crystallized thin films exhibit a cubic pyrochlore structure, not a monoclinic zirconolite structure, which is probably attributed by the composition deviation from the stoichiometric ratio. The resultant Bi2Zn2/3Nb4/3O7 thin films exhibit the character with high dielectric constant and low loss tangent. The dielectric constant gradually increases with the substrate temperature and reaches a maximum at 700 °C. The dielectric constant and loss tangent of the thin films deposited at 700 °C are 152 and 0.002 at 10 kHz, respectively. With further increase of substrate temperature to 750 °C, the dielectric constant decreases to 128. However, the tunability of the resultant thin films disappears, and the temperature coefficients are positive, which implies a more ordered structure in thin films.  相似文献   

9.
2/3 Ca1/3MnO3 thin films as a function of temperature from 4 to 300 K are studied. The application of external pressure increases the temperature of the metal–insulator transition (TMI). For a film showing TMI at about 177 K, a colossal change in resisitivity (R(0)-R(p))/R(p) qualitatively comparable to the magnetoresistance (R(0)-R(B))/R(B) around the transition temperature, is observed. However, this change for the film with high TMI (267 K) is smaller by a factor of about 100. The increase of TMI with pressure is intimately associated with the pressure-induced contraction and alignment of Mn-O-Mn bonds and the possible enhancement of the double-exchange interaction with pressure. Received: 11 September 1998/Accepted: 12 September 1998  相似文献   

10.
Zinc oxide is a very important piezoelectric material with lower preparation temperature, simpler structure and composition. By doping with some elements having smaller ionic radii, such as lithium, to substitute the zinc ions, it is expected that the center of the positive charge in a unit cell will not overlap with that of the negative charge in the same unit cell, leading to the appearance of the spontaneous polarization. Thin films of Li-doped ZnO with different compositions (Zn1-xLixOy, x=0.075, 0.1, 0.125 and 0.15) have been prepared on heavily doped Si substrates by a pulsed laser deposition technique. In the films with x=0.1 and x=0.125, ferroelectric P–E hysteresis loops were successfully observed. The remanent polarization and the coercive field of Zn0.9Li0.1Oy and Zn0.875Li0.125Oy were (0.193 C/cm2, 4.8 kV/cm) and (0.255 C/cm2, 4.89 kV/cm), respectively. An anomalous point in the dielectric spectrum of the Li-doped ZnO ceramics is observed, showing that the ferroelectric phase transition occurs around 67 °C under 7.5 at.% Li-doped ZnO and 74 °C under 10 at.%. If the remanent polarization of this material can be further increased, it may be used as a ferroelectric material. PACS 77.80.Bh; 78.20.-e; 68.37.Ps  相似文献   

11.
La0.8Ca0.2MnO3 (LCMO) thin films about 200 nm thickness were grown on untilted and tilted (5°, 10° and 15°) LaAlO3 (100) single crystal substrates by pulsed laser deposition technique. Electrical properties of the epitaxial thin films were studied by conventional four-probe technique and the anisotropic thermoelectric properties of the films grown on the tilted substrates have been investigated by laser-induced voltage (LIV) measurements. X-ray diffraction analysis and atomic force microscopy results show that the prepared LCMO thin films have a single phase and high crystalline quality. The remarkably large temperature coefficient of resistance (TCR) values (above 11 %/K) are observed in the all films. TCR value reaches 18 %/K on the film grown on 10° tilted substrate. The intensity of LIV signals monotonously increases with the tilting angles, and the largest signal is 148 mV with the fast time response 229 ns for the film grown on 15° tilted substrate.  相似文献   

12.
Nd:LiYF4 (YLF) thin films were prepared on CaF2 or YLF substrates by pulsed laser deposition, using a KrF laser for ablation of Nd:LiYF4 single-crystal targets. For 10 J/cm2, 450 °C and about 10-6 mbar pressure, transparent and crystalline, highly textured, YLF films were obtained, without oxyfluoride or YF3 contamination. High surface roughness is shown by optical microscopy and interface ion diffusion between film and substrate is evidenced by Rutherford backscattering spectroscopy. Fluorescence properties of the films are quite similar to those of bulk Nd:YLF crystal, which confirms the pure YLF composition and shows good conservation of Nd3+ ion doping rate. PACS 81.15.Fg; 68.55.Jk; 78.55.Hx  相似文献   

13.
Indium tin oxide (ITO) thin films were prepared by pulsed laser deposition (PLD) on glass substrate at room temperature. Structural, optical, and electrical properties of these films were analyzed in order to investigate its dependence on oxygen pressure, and rapid thermal annealing (RTA) temperature. High quality ITO films with a low resistivity of 3.3 × 10−4 Ω cm and a transparency above 90% were able to be formed at an oxygen pressure of 2.0 Pa and an RTA temperature of 400 °C. A four-point probe method, X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-NIR grating spectrometer are used to investigate the properties of ITO films.  相似文献   

14.
S Angappane  K Sethupathi  G Rangarajan 《Pramana》2002,58(5-6):1079-1083
We report here the low-temperature resistivity of the chemical solution deposited La1−x Ca x MnO3 (x=0.2, 0.3 and 0.33) thin films on LaAlO3 substrates. The films were post-annealed in atmosphere at 850°C. The low temperature resistivity data has been studied in order to understand the nature of low-temperature conduction processes. The data showed T 2 dependence from 60 K to 120 K consistent with the single magnon scattering process. The deviation from this quadratic temperature dependence at low temperatures is attributed to the collapse of the minority spin band. The two-magnon and electron-phonon processes contribute to scattering of carriers in the temperature range above 120 K.  相似文献   

15.
Hydrogen doped MgO films were grown by pulsed laser deposition method. Gaseous hydrogen stored in cavities of milky MgO single crystal targets provided doping in film deposition process. Clear MgO targets without hydrogen were used in the preparation of reference films. The influence of hydrogen doping on firing voltage (FV) of gas discharge and its AC frequency dependence was investigated. According to thermoluminescence experiments, the films grown from milky targets contained two kinds of electron traps with the activation energies of 0.051 and 0.31 eV, while latter traps were absent in reference samples. The 0.31 eV trap was assigned to the hydride ion H occupying an oxygen vacancy site in MgO crystal structure. Using standard gas mixture (Ne-10% Xe), FVs of hydrogen doped sample showed considerable frequency dependence and were up to 55 V lower in comparison to the reference sample. The FVs of reference sample were shifted 14-28 V to higher values when N2 gas was added to the mixture. The N2 addition lowered the FVs of hydrogen doped sample up to 38 V and almost eliminated the FV frequency dependence.  相似文献   

16.
CaTiO3:Pr3+ films were deposited on different substrates such as Al2O3 (0 0 0 1), Si (1 0 0), MgO (1 0 0), and fused silica using pulsed laser deposition method. The crystallinity and surface morphology of these films were investigated by XRD and SEM measurements. The films grown on the different substrates have different crystallinity and morphology. The FWHM of (2 0 0) peak are 0.18, 0.25, 0.28, and 0.30 for Al2O3 (0 0 0 1), Si (1 0 0), MgO (1 0 0), and fused silica, respectively. The grain sizes of phosphors grown on different substrates were estimated by using Scherrer's formula and the maximum crystallite size observed for the thin film grown on Al2O3 (0 0 0 1). The room temperature PL spectra exhibit only the red emission peak at 613 nm radiated from the transition of (1D2 → 3H4) and the maximum PL intensity for the films grown on the Al2O3 (0 0 0 1) is 1.1, 1.4, and 3.7 times higher than that of the CaTiO3:Pr3+ films grown on MgO (1 0 0), Si (1 0 0), and fused Sillica substrates, respectively. The crystallinity, surface morphology and luminescence spectra of thin-film phosphors were highly dependent on substrates.  相似文献   

17.
The zirconium oxide (ZrO2) thin films are deposited on Si (100) and quartz substrates at various substrate temperatures (room temperature–973 K) at an optimized oxygen partial pressure of 3×10?2 mbar using pulsed laser deposition technique. The effect of substrate temperature on microstructural, optical and mechanical properties of the films is investigated. The X-ray diffraction studies show that the films deposited at temperatures ≤773 K are monoclinic, while the films deposited at temperatures ≥873 K show both monoclinic and tetragonal phases. Tetragonal phase content increases with the increase of substrate temperatures. The surface morphology and roughness are investigated using atomic force microscope in contact mode. The optical properties of the films show that the refractive indices (at 550 nm) are found to increase from 1.84 to 2.35 as the temperature raises from room temperature (RT) to 973 K. Nanoindentation measurements show that the hardness of the films is 11.8 and 13.7 GPa for the films deposited at 300 and 973 K, respectively.  相似文献   

18.
Well-crystallized 250 nm-thick SrTiO3 thin films on fused-quartz substrate were prepared by pulsed laser deposition. The band-gap of SrTiO3 thin film by transmittance spectra is equal to 3.50 eV, larger than 3.22 eV for the bulk crystal. The nonlinear optical properties of the films were examined with picosecond pulses at 1.064 μm excitation. A large two-photon absorption (TPA) with absorption coefficient of 87.7 cm/GW was obtained, larger than 51.7 cm/GW for BaTiO3 thin films. The nonlinear refractive index n2 is equal to 5.7×10−10 esu with a negative sign, larger than 0.267×10−11 esu for bulk SrTiO3. The large TPA is attributed to intermediate energy levels introduced by the grain boundaries, and the optical limiting behaviors stemming from both TPA and negative nonlinear refraction were also discussed.  相似文献   

19.
Nd-doped BiFeO3 thin films were grown by pulsed laser deposition on quartz substrate and their structural, optical and magnetic properties have been studied. X-ray diffraction analysis revealed that Nd addition caused structural distortion even with 5% of Nd concentration, additional secondary phase appeared in all samples but its intensity was greatly reduced with Nd addition. Doping-induced variations in texture and structure modifying both magnetic and optical properties of BiFeO3 thin films. The energy band gap decreases while the refractive index increases with addition of Nd3+ in BiFeO3 for Bi3+. These variations in energy band gap and refractive index have been explained on the basis of density of states and increase in disorders in the system. All the samples were found to exhibit ferromagnetism at room temperature and the saturation magnetization increases with the increase in structural distortion with addition of Nd. Finally, Nd-doping modifies the physical properties of BiFeO3 in comparison to undoped BiFeO3 thin films.  相似文献   

20.
Indium tin oxide (ITO) thin films (200-400 nm in thickness) have been grown by pulsed laser deposition (PLD) on glass substrates without a post-deposition anneal. The electrical and optical properties of these films have been investigated as a function of substrate temperature and oxygen partial pressure during deposition. Films were deposited at substrate temperatures ranging from room temperature to 300 °C in O2 partial pressures ranging from 0.1 to 100 mTorr. For 300 nm thick ITO films grown at room temperature in oxygen pressure of 10 mTorr, the electrical conductivity was 2.6᎒-3 Q-1cm-1 and the average optical transmittance was 83% in the visible range (400-700 nm). For 300 nm thick ITO films deposited at 300 °C in 10 mTorr of oxygen, the conductivity was 5.2᎒-3 Q-1cm-1 and the average transmittance in the visible range was 87%. Atomic force microscopy (AFM) measurements showed that the RMS surface roughness for the ITO films grown at room temperature was ~7 Å, which is the lowest reported value for the ITO films grown by any film growth technique at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号