首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nguyen  Sy Dzung  Lam  Bao Danh  Ngo  Van Hoa 《Nonlinear dynamics》2020,101(2):795-821
Nonlinear Dynamics - Due to the complexly natural attributes of technical systems, reality has been shown that many systems could be modeled more precisely if they are modeled by using fractional...  相似文献   

2.
3.
This paper discusses the design of fuzzy PID type controllers (FPIDC) to improve seismic control performance of a nonlinear structural system with an active tuned mass damper (ATMD) against earthquakes. Since structural systems have nonlinearities and uncertainties, fuzzy-based controllers are adequate because of their robust character and satisfactory performance in active structural control. The main advantages of this controller are the ability to handle nonlinearities and uncertainties effectively. In the literature, various structures for fuzzy PID (including PI and PD) controllers have been proposed. In order to obtain proportional, integral and derivative control actions altogether, it is intuitive and convenient to combine PI and PD actions to form a fuzzy PID controller. The simulated system has fifteen degrees of freedom and is modeled using nonlinear behavior of the base–structure interaction. The system is then simulated against the ground motion of the Northridge earthquake (M w =6.7) in USA on 17 January, 1994. Finally, the time history of the storey displacements, accelerations, ATMD displacements, control voltage and frequency responses of both the uncontrolled and controlled cases are presented. The ground motion recorded of the El-Centro and Kocaeli earthquakes has been used to evaluate the effectiveness of the proposed control algorithm. The robustness of the controller has been checked through the uncertainty in stiffness of the structure. Simulation results exhibit that superior vibration suppression is achieved by the use of designed fuzzy PID type controllers.  相似文献   

4.
5.
Nonlinear Dynamics - Closed forms of stabilizing sets are generally only available for linearized systems. An innovative numerical strategy to estimate stabilizing sets of PI or PID controllers...  相似文献   

6.
The problem of position control in the operational space of a robot manipulator is addressed in the paper. The proposed controller is based on equations of motion expressed in terms of normalized generalized velocity components (NGVC) which result from decomposition of the manipulator inertia matrix. The sufficient conditions for global exponential stability of the system under the controller are given. It is shown that using the controller an further insight into the system dynamics is possible. The proposed control algorithm is tested via simulation on a spatial manipulator with three degrees of freedom.  相似文献   

7.
In this paper, an H ?? output feedback controller is developed for a class of time-delayed MIMO nonlinear systems, containing backlash as an input nonlinearity. Particularly, a state observer is proposed to estimate unmeasurable states. The control law can be divided into two elements: An adaptive interval type-2 fuzzy part which approximates the uncertain model. The second part is an H ??-based controller, which attenuates the effects of external disturbances and approximation errors to a prescribed level. Furthermore, the Lyapunov theorem is used to prove stability of proposed controller and its robustness to external disturbance, hysteresis input nonlinearity, and time varying time-delay. As an example, the designed controller is applied to address the tracking problem of 2-DOF robotic manipulator. Simulation results not only verify the robust properties but also in comparison with an existing method reveal the ability of the proposed controller to exclude the effects of unknown time varying time-delays and hysteresis input nonlinearity.  相似文献   

8.
A new nonlinear integral resonant controller (NIRC) is introduced in this paper to suppress vibration in nonlinear oscillatory smart structures. The NIRC consists of a first-order resonant integrator that provides additional damping in a closed-loop system response to reduce high-amplitude nonlinear vibration around the fundamental reso-nance frequency. The method of multiple scales is used to obtain an approximate solution for the closed-loop system. Then closed-loop system stability is investigated using the resulting modulation equation. Finally, the effects of different control system parameters are illustrated and an approximate solution response is verified via numerical simulation results. The advantages and disadvantages of the proposed controller are presented and extensively discussed in the results. The controlled system via the NIRC shows no high-amplitude peaks in the neighboring frequencies of the resonant mode, unlike conventional second-order compensation methods. This makes the NIRC controlled system robust to excitation frequency variations.  相似文献   

9.
This study presents robust control architecture in the sense of variable structure control via a backstepping design. By using systematic backstepping design techniques, closed-loop behavior of an n-order nonlinear system can be transformed into a stability and convergence problem of a fast switched 2nd order system. There are two main parts contained within the proposed control algorithm; one is a nominal control effort generated according to the Lyapunov stability criterion during recursive backstepping processes, and the other belongs to a smooth robust control law designed to eliminate the effects of unknown lumped perturbations. Finally, a Genesio system is used as an illustrated example to demonstrate the robustness of the control algorithm. The feasibility and properties of the proposed method are given by numerical simulations.  相似文献   

10.
This paper proposes a near optimal controller design method for unified chaotic systems based on state-dependent Riccati equation (SDRE) approach. A parameterization of the optimal nonlinear control gain is given in terms of the solution matrix of an SDRE. A simple algorithm to compute the near optimal control gain is proposed. The proposed near optimal control design method is also extended to the synchronization problem for unified chaotic systems. Finally, the effectiveness of the proposed design method is verified via numerical simulations.  相似文献   

11.
12.
13.
14.
We propose the use of a second-order sliding-mode controller (2-SMC) to stabilize an autonomous underwater vehicle (AUV) which is subject to modeling errors and often suffers from unknown environmental disturbances. The 2-SMC is effective in compensating for the uncertainties in the hydrodynamic and hydrostatic parameters of the vehicle and rejecting the unpredictable disturbance effects due to ocean waves, tides, and currents. The 2-SMC is comprised of an equivalent controller and a switching controller to suppress the parameter uncertainties and external disturbances, and its closed-loop system is exponentially stable in the presence of parameter uncertainties and unknown disturbances. We performed numerical simulations to validate the proposed control approach, and experimental tests using Cyclops AUV were conducted to demonstrate its practical feasibility. The proposed controller increased the accuracy of trajectory tracking for an AUV in the presence of uncertain hydrodynamics and unknown disturbances.  相似文献   

15.
It is generally difficult to design feedback controls of nonlinear systems with time delay to meet time domain specifications such as rise time, overshoot, and tracking error. Furthermore, these time domain specifications tend to be conflicting to each other to make the control design even more challenging. This paper presents a cell mapping method for multi-objective optimal feedback control design in time domain for a nonlinear Duffing system with time delay. We first review the multi-objective optimization problem and its formulation for control design. We then introduce the cell mapping method and a hybrid algorithm for global optimal solutions. Numerical simulations of the PID control are presented to show the features of the multi-objective optimal design.  相似文献   

16.
17.
Xie  Wei  Reis  Joel  Cabecinhas  David  Silvestre  Carlos 《Nonlinear dynamics》2020,102(4):2563-2581
Nonlinear Dynamics - This paper addresses the problem of trajectory tracking control of an underactuated surface vessel moving in a two-dimensional space in the presence of unknown disturbances. In...  相似文献   

18.
Designing minimum variance controllers (MVC) for nonlinear systems is confronted with many difficulties. The methods which are able to identify MIMO nonlinear systems are scarce, and linear models are not accurate in modeling nonlinear systems. In this paper, Vector ARX (VARX) models are proposed for designing MVC and generalized minimum variance controller (GMVC) for linear and nonlinear systems, and the accuracy of these models in approximating the nonlinear MIMO system is studied. However, the VARX is a linear model. It is shown that this model can identify some kinds of nonlinear systems with any desired accuracy. Therefore, the controller designed by the VARX is accurate, even for these nonlinear systems. The proposed controller is tested on a both linear system and a nonlinear four-tank benchmark process. In spite of the simplicity of designing GMVCs for the VARX models, the results show that the proposed method is accurate and implementable.  相似文献   

19.
20.
In this paper, a study for positive position feedback controller is presented that is used to suppress the vibration amplitude of a nonlinear dynamic model at primary resonance and the presence of 1:1 internal resonance. We obtained an approximate solution by applying the multiple scales method. Then we conducted bifurcation analyses for open and closed loop systems. The stability of the system is investigated by applying the frequency-response equations. The effects of the different controller parameters on the behavior of the main system have been studied. Optimum working conditions of the system were extracted to be used in the design of such systems. Finally, numerical simulations are performed to demonstrate and validate the control law. We found that all predictions from analytical solutions are in good agreement with the numerical simulation. A comparison with the available published work is included at the end of the work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号